Spaces:
Runtime error
Runtime error
import pickle | |
import numpy as np | |
import io | |
import math | |
from fastapi import FastAPI, File, UploadFile, HTTPException | |
from PIL import Image | |
app = FastAPI( | |
title="Peruvian Sign Language (LSP) Recognition API", | |
description="Sube una imagen de una seña del alfabeto de la LSP para predecir la letra correspondiente usando un Mapa Autoorganizado (SOM).", | |
version="1.0.0" | |
) | |
try: | |
with open('lsp_som_model.pkl', 'rb') as f: | |
model_data = pickle.load(f) | |
som = model_data['som'] | |
label_map = model_data['label_map'] | |
CLASSES = model_data['classes'] # La lista ['A', 'B', 'C', ...] | |
IMG_SIZE = model_data['img_size'] # El tamaño de la imagen | |
print("✅ Modelo y activos cargados exitosamente.") | |
print(f" - Clases reconocidas: {CLASSES}") | |
print(f" - Tamaño de imagen esperado: {IMG_SIZE}x{IMG_SIZE}") | |
except FileNotFoundError: | |
print("❌ ERROR: No se encontró el archivo del modelo 'lsp_som_model.pkl'.") | |
som = None | |
def preprocess_image_from_bytes(image_bytes: bytes): | |
try: | |
img = Image.open(io.BytesIO(image_bytes)).convert('L') # 'L' para escala de grises | |
img = img.resize((IMG_SIZE, IMG_SIZE)) | |
img_array = np.array(img) | |
img_normalized = img_array / 255.0 | |
return img_normalized.flatten() | |
except Exception as e: | |
raise HTTPException(status_code=400, detail=f"Archivo de imagen inválido. Error: {e}") | |
def read_root(): | |
return {"status": "ok", "message": "API de Reconocimiento de LSP!!"} | |
async def predict_sign(file: UploadFile = File(..., description="Un archivo de imagen de una seña de la LSP.")): | |
if not som: | |
raise HTTPException(status_code=503, detail="El modelo no está cargado.") | |
image_bytes = await file.read() | |
feature_vector = preprocess_image_from_bytes(image_bytes) | |
winner_neuron = som.winner(feature_vector) | |
predicted_index = label_map.get(winner_neuron, -1) | |
# Vecino mas cercano para prediccion | |
is_best_guess = False | |
if predicted_index == -1: | |
is_best_guess = True | |
min_dist = float('inf') | |
for mapped_pos, mapped_label in label_map.items(): | |
dist = math.sqrt((winner_neuron[0] - mapped_pos[0])**2 + (winner_neuron[1] - mapped_pos[1])**2) | |
if dist < min_dist: | |
min_dist = dist | |
predicted_index = mapped_label | |
if predicted_index != -1: | |
predicted_letter = CLASSES[predicted_index] | |
prediction_type = "Nearest Neighbor" if is_best_guess else "Direct Match" | |
else: | |
predicted_letter = "Unknown" | |
prediction_type = "Error (No Mapped Neurons Found)" | |
return { | |
"filename": file.filename, | |
"predicted_letter": predicted_letter, | |
"prediction_type": prediction_type, | |
"winner_neuron_on_map": [int(coord) for coord in winner_neuron] | |
} |