|
import pickle |
|
import numpy as np |
|
import io |
|
import math |
|
from fastapi import FastAPI, File, UploadFile, HTTPException |
|
from PIL import Image |
|
|
|
app = FastAPI( |
|
title="Peruvian Sign Language (LSP) Recognition API", |
|
description="Sube una imagen de una seña del alfabeto de la LSP para predecir la letra correspondiente usando un Mapa Autoorganizado (SOM).", |
|
version="1.0.0" |
|
) |
|
|
|
try: |
|
with open('lsp_som_model.pkl', 'rb') as f: |
|
model_data = pickle.load(f) |
|
som = model_data['som'] |
|
label_map = model_data['label_map'] |
|
CLASSES = model_data['classes'] |
|
IMG_SIZE = model_data['img_size'] |
|
print("✅ Modelo y activos cargados exitosamente.") |
|
print(f" - Clases reconocidas: {CLASSES}") |
|
print(f" - Tamaño de imagen esperado: {IMG_SIZE}x{IMG_SIZE}") |
|
except FileNotFoundError: |
|
print("❌ ERROR: No se encontró el archivo del modelo 'lsp_som_model.pkl'.") |
|
som = None |
|
|
|
def preprocess_image_from_bytes(image_bytes: bytes): |
|
try: |
|
img = Image.open(io.BytesIO(image_bytes)).convert('L') |
|
img = img.resize((IMG_SIZE, IMG_SIZE)) |
|
img_array = np.array(img) |
|
img_normalized = img_array / 255.0 |
|
return img_normalized.flatten() |
|
except Exception as e: |
|
raise HTTPException(status_code=400, detail=f"Archivo de imagen inválido. Error: {e}") |
|
|
|
@app.get("/", tags=["Status"]) |
|
def read_root(): |
|
return {"status": "ok", "message": "API de Reconocimiento de LSP!!"} |
|
|
|
@app.post("/predict", tags=["Prediction"]) |
|
async def predict_sign(file: UploadFile = File(..., description="Un archivo de imagen de una seña de la LSP.")): |
|
if not som: |
|
raise HTTPException(status_code=503, detail="El modelo no está cargado.") |
|
|
|
image_bytes = await file.read() |
|
|
|
feature_vector = preprocess_image_from_bytes(image_bytes) |
|
|
|
winner_neuron = som.winner(feature_vector) |
|
|
|
predicted_index = label_map.get(winner_neuron, -1) |
|
|
|
|
|
is_best_guess = False |
|
if predicted_index == -1: |
|
is_best_guess = True |
|
min_dist = float('inf') |
|
for mapped_pos, mapped_label in label_map.items(): |
|
dist = math.sqrt((winner_neuron[0] - mapped_pos[0])**2 + (winner_neuron[1] - mapped_pos[1])**2) |
|
if dist < min_dist: |
|
min_dist = dist |
|
predicted_index = mapped_label |
|
|
|
if predicted_index != -1: |
|
predicted_letter = CLASSES[predicted_index] |
|
prediction_type = "Nearest Neighbor" if is_best_guess else "Direct Match" |
|
else: |
|
predicted_letter = "Unknown" |
|
prediction_type = "Error (No Mapped Neurons Found)" |
|
|
|
response = { |
|
"filename": file.filename, |
|
"predicted_letter": predicted_letter, |
|
"prediction_type": prediction_type, |
|
"winner_neuron_on_map": [int(coord) for coord in winner_neuron] |
|
} |
|
print(f"[LOG] Respuesta enviada: {response}") |
|
return response |