Spaces:
Sleeping
Sleeping
import io | |
import numpy as np | |
import tensorflow as tf | |
from fastapi import FastAPI, File, UploadFile | |
from fastapi.responses import JSONResponse | |
from PIL import Image | |
from pydantic import BaseModel | |
class TranslationResponse(BaseModel): | |
prediction: str | |
confidence: float | |
try: | |
model = tf.keras.models.load_model('best_model_2.keras') | |
except Exception as e: | |
raise IOError(f"Error al cargar el modelo 'best_model.keras'. Error: {e}") | |
app = FastAPI( | |
title="API keras asl", | |
description="Sube una imagen del alfabeto de señas (ASL) para obtener una predicción del modelo.", | |
version="1.0.0" | |
) | |
CLASS_NAMES = [ | |
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', | |
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' | |
] | |
def preprocess_image(image: Image.Image) -> np.ndarray: | |
image = image.resize((96, 96)) | |
image_array = np.array(image) | |
if image_array.shape[2] == 4: # Maneja imágenes RGBA | |
image_array = image_array[..., :3] | |
return np.expand_dims(image_array, axis=0) | |
async def predict(file: UploadFile = File(...)): | |
contents = await file.read() | |
try: | |
image = Image.open(io.BytesIO(contents)).convert('RGB') | |
except Exception as e: | |
return JSONResponse(status_code=400, content={"message": f"Error al leer la imagen: {e}"}) | |
processed_image = preprocess_image(image) | |
predictions = model.predict(processed_image) | |
predicted_index = np.argmax(predictions, axis=1)[0] | |
confidence = float(predictions[0][predicted_index]) | |
prediction_label = CLASS_NAMES[predicted_index] | |
return TranslationResponse(prediction=prediction_label, confidence=confidence) | |
def read_root(): | |
return {"message": "/predict/ para leer imagen."} |