import io import numpy as np import tensorflow as tf from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse from PIL import Image from pydantic import BaseModel class TranslationResponse(BaseModel): prediction: str confidence: float try: model = tf.keras.models.load_model('best_model_2.keras') except Exception as e: raise IOError(f"Error al cargar el modelo 'best_model.keras'. Error: {e}") app = FastAPI( title="API keras asl", description="Sube una imagen del alfabeto de señas (ASL) para obtener una predicción del modelo.", version="1.0.0" ) CLASS_NAMES = [ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' ] def preprocess_image(image: Image.Image) -> np.ndarray: image = image.resize((96, 96)) image_array = np.array(image) if image_array.shape[2] == 4: # Maneja imágenes RGBA image_array = image_array[..., :3] return np.expand_dims(image_array, axis=0) @app.post("/predict/", response_model=TranslationResponse) async def predict(file: UploadFile = File(...)): contents = await file.read() try: image = Image.open(io.BytesIO(contents)).convert('RGB') except Exception as e: return JSONResponse(status_code=400, content={"message": f"Error al leer la imagen: {e}"}) processed_image = preprocess_image(image) predictions = model.predict(processed_image) predicted_index = np.argmax(predictions, axis=1)[0] confidence = float(predictions[0][predicted_index]) prediction_label = CLASS_NAMES[predicted_index] return TranslationResponse(prediction=prediction_label, confidence=confidence) @app.get("/") def read_root(): return {"message": "/predict/ para leer imagen."}