import streamlit as st import cv2 import numpy as np from ultralytics import YOLO from PIL import Image import os st.title("YOLO Image and Video Processing") # Allow users to upload images or videos uploaded_file = st.file_uploader("Upload an image or video", type=["jpg", "jpeg", "png", "bmp", "mp4", "avi", "mov", "mkv"]) try: model = YOLO('best.pt') # Replace with the path to your trained YOLO model except Exception as e: st.error(f"Error loading YOLO model: {e}") def predict_and_save_image(path_test_car, output_image_path): """ Predicts and saves the bounding boxes on the given test image using the trained YOLO model. Parameters: path_test_car (str): Path to the test image file. output_image_path (str): Path to save the output image file. Returns: str: The path to the saved output image file. """ try: results = model.predict(path_test_car, device='cpu') image = cv2.imread(path_test_car) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) for result in results: for box in result.boxes: x1, y1, x2, y2 = map(int, box.xyxy[0]) confidence = box.conf[0] cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(image, f'{confidence * 100:.2f}%', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.imwrite(output_image_path, image) return output_image_path except Exception as e: st.error(f"Error processing image: {e}") return None def predict_and_plot_video(video_path, output_path): """ Predicts and saves the bounding boxes on the given test video using the trained YOLO model. Parameters: video_path (str): Path to the test video file. output_path (str): Path to save the output video file. Returns: str: The path to the saved output video file. """ try: cap = cv2.VideoCapture(video_path) if not cap.isOpened(): st.error(f"Error opening video file: {video_path}") return None frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(cap.get(cv2.CAP_PROP_FPS)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height)) while cap.isOpened(): ret, frame = cap.read() if not ret: break rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = model.predict(rgb_frame, device='cpu') for result in results: for box in result.boxes: x1, y1, x2, y2 = map(int, box.xyxy[0]) confidence = box.conf[0] cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, f'{confidence * 100:.2f}%', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2) out.write(frame) cap.release() out.release() return output_path except Exception as e: st.error(f"Error processing video: {e}") return None def process_media(input_path, output_path): """ Processes the uploaded media file (image or video) and returns the path to the saved output file. Parameters: input_path (str): Path to the input media file. output_path (str): Path to save the output media file. Returns: str: The path to the saved output media file. """ file_extension = os.path.splitext(input_path)[1].lower() if file_extension in ['.mp4', '.avi', '.mov', '.mkv']: return predict_and_plot_video(input_path, output_path) elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']: return predict_and_save_image(input_path, output_path) else: st.error(f"Unsupported file type: {file_extension}") return None if uploaded_file is not None: input_path = os.path.join("temp", uploaded_file.name) output_path = os.path.join("temp", f"output_{uploaded_file.name}") try: with open(input_path, "wb") as f: f.write(uploaded_file.getbuffer()) st.write("Processing...") result_path = process_media(input_path, output_path) if result_path: if input_path.endswith(('.mp4', '.avi', '.mov', '.mkv')): video_file = open(result_path, 'rb') video_bytes = video_file.read() st.video(video_bytes) else: st.image(result_path) except Exception as e: st.error(f"Error uploading or processing file: {e}")