File size: 16,221 Bytes
2f33391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c9666
df8e6a2
12c9666
 
 
 
 
 
 
2f33391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fbc916
 
 
 
 
 
 
 
 
 
 
2f33391
2fbc916
 
2f33391
 
 
 
 
 
 
 
2fbc916
ed55c98
f8bc416
 
 
2fbc916
 
 
ed55c98
2fbc916
 
ed55c98
f8bc416
2f33391
f8bc416
 
 
 
 
 
 
 
 
 
2f33391
f8bc416
 
 
2fbc916
 
 
 
 
 
 
 
 
ed55c98
2fbc916
 
 
 
 
 
 
 
 
f8bc416
2f33391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaa98a9
2f33391
 
f8bc416
2f33391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaa98a9
2f33391
 
f8bc416
2f33391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaa98a9
2f33391
 
 
 
 
 
eaa98a9
 
 
 
 
 
 
 
 
2f33391
 
 
 
 
 
 
 
 
 
 
 
 
f8bc416
 
3d4413c
f8bc416
 
3d4413c
 
f8bc416
3d4413c
 
 
 
 
 
f8bc416
 
 
 
 
 
 
 
 
eaa98a9
f8bc416
 
2f33391
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import gradio as gr
import os
import re
import time
import torch
import torch.nn as nn
from PIL import Image
import requests
import easyocr
from transformers import AutoTokenizer
from torchvision import transforms
from torchvision import models
from torchvision.transforms import functional as F
import pandas as pd
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings("ignore")

# --- Setup ---

# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p1')

# Image transformation
class ResizePadToSquare:
    def __init__(self, target_size=300):
        self.target_size = target_size

    def __call__(self, img):
        img = img.convert("RGB")
        img.thumbnail((self.target_size, self.target_size), Image.BILINEAR)
        delta_w = self.target_size - img.size[0]
        delta_h = self.target_size - img.size[1]
        padding = (delta_w // 2, delta_h // 2, delta_w - delta_w // 2, delta_h - delta_h // 2)
        img = F.pad(img, padding, fill=0, padding_mode='constant')
        return img

transform = transforms.Compose([
    ResizePadToSquare(300),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                         std=[0.229, 0.224, 0.225]),
])


# Screenshot folder
SCREENSHOT_DIR = "screenshots"
os.makedirs(SCREENSHOT_DIR, exist_ok=True)

# Create OCR reader
reader = easyocr.Reader(['id'])  # Indonesia language
print("OCR reader initialized.")

# --- Model ---

class LateFusionModel(nn.Module):
    def __init__(self, image_model, text_model):
        super(LateFusionModel, self).__init__()
        self.image_model = image_model
        self.text_model = text_model
        self.image_weight = nn.Parameter(torch.tensor(0.5))
        self.text_weight = nn.Parameter(torch.tensor(0.5))

    def forward(self, images, input_ids, attention_mask):
        with torch.no_grad():
            image_logits = self.image_model(images).squeeze(1)
            text_logits = self.text_model(input_ids=input_ids, attention_mask=attention_mask).logits.squeeze(1)

        weights = torch.softmax(torch.stack([self.image_weight, self.text_weight]), dim=0)
        fused_logits = weights[0] * image_logits + weights[1] * text_logits

        return fused_logits, image_logits, text_logits, weights

# Load model
model_path = "models/best_fusion_model.pt"
if os.path.exists(model_path):
    fusion_model = torch.load(model_path, map_location=device, weights_only=False)
else:
    model_path = hf_hub_download(repo_id="azzandr/gambling-fusion-model", filename="best_fusion_model.pt")
    fusion_model = torch.load(model_path, map_location=device, weights_only=False)

# fusion_model = unwrap_dataparallel(fusion_model)  
fusion_model.to(device)
fusion_model.eval()
print("Fusion model loaded successfully!")

# Load Image-Only Model
# Load image model from state_dict
image_model_path = "models/best_image_model_Adam_lr0.0001_bs32_state_dict.pt"
if os.path.exists(image_model_path):
    image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
    num_features = image_only_model.classifier[1].in_features
    image_only_model.classifier = nn.Linear(num_features, 1)
    image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
    image_only_model.to(device)
    image_only_model.eval()
    print("Image-only model loaded from state_dict successfully!")
else:
    print("Image-only model not found locally. Downloading from Hugging Face Hub...")
    image_model_path = hf_hub_download(repo_id="azzandr/gambling-image-model", filename="best_image_model_Adam_lr0.0001_bs32_state_dict.pt")
    image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
    num_features = image_only_model.classifier[1].in_features
    image_only_model.classifier = nn.Linear(num_features, 1)
    image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
    image_only_model.to(device)
    image_only_model.eval()
    print("Image-only model downloaded and loaded successfully!")


# --- Functions ---
def clean_text(text):
    exceptions = {
        "di", "ke", "ya"
    }
    # ----- BASIC CLEANING -----
    text = re.sub(r"http\S+", "", text)  # Hapus URL
    text = re.sub(r"\n", " ", text)  # Ganti newline dengan spasi
    text = re.sub(r"[^a-zA-Z']", " ", text)  # Hanya sisakan huruf dan apostrof
    text = re.sub(r"\s{2,}", " ", text).strip().lower()  # Hapus spasi ganda, ubah ke lowercase

    # ----- FILTERING -----
    words = text.split()
    filtered_words = [
        w for w in words
        if (len(w) > 2 or w in exceptions)  # Simpan kata >2 huruf atau ada di exceptions
    ]
    text = ' '.join(filtered_words)

    # ----- REMOVE UNWANTED PATTERNS -----
    text = re.sub(r'\b[aeiou]+\b', '', text)  # Hapus kata semua vokal (panjang berapa pun)
    text = re.sub(r'\b[^aeiou\s]+\b', '', text)  # Hapus kata semua konsonan (panjang berapa pun)
    text = re.sub(r'\b\w{20,}\b', '', text)  # Hapus kata sangat panjang (≥20 huruf)
    text = re.sub(r'\s+', ' ', text).strip()  # Bersihkan spasi ekstra

    # check words number
    if len(text.split()) < 5:
        print(f"Cleaned text too short ({len(text.split())} words). Ignoring text.")
        return ""  # empty return to use image-only
    return text

# Your API key
SCREENSHOT_API_KEY = os.getenv("SCREENSHOT_API_KEY")  # Ambil dari environment variable

# Constants for screenshot configuration
CLOUDFLARE_CHECK_KEYWORDS = ["Checking your browser", "Just a moment", "Cloudflare"]

def ensure_http(url):
    if not url.startswith(('http://', 'https://')):
        return 'http://' + url
    return url

def sanitize_filename(url):
    return re.sub(r'[^\w\-_\. ]', '_', url)

def take_screenshot(url):
    url = ensure_http(url)
    filename = sanitize_filename(url) + '.png'
    filepath = os.path.join(SCREENSHOT_DIR, filename)

    try:
        if not SCREENSHOT_API_KEY:
            print("SCREENSHOT_API_KEY not found in environment.")
            return None

        api_url = "https://api.apiflash.com/v1/urltoimage"
        
        # Base parameters - only using supported parameters
        params = {
            "access_key": SCREENSHOT_API_KEY,
            "url": url,
            "format": "png",
            "wait_until": "network_idle",
            "delay": 2,
            "fail_on_status": "400,401,402,403,404,500,502,503,504",
            "fresh": "true",  # Don't use cached version
            "response_type": "image",
            "wait_for": "body"  # Wait for body to be present
        }
        
        print(f"Taking screenshot of: {url}")
        response = requests.get(api_url, params=params)

        if response.status_code == 200:
            # Check if response is actually an image
            if response.headers.get('content-type', '').startswith('image'):
                with open(filepath, 'wb') as f:
                    f.write(response.content)
                print(f"Screenshot taken successfully for URL: {url}")
                return filepath
            else:
                print(f"API returned non-image content")
                return None
        else:
            error_msg = response.text
            print(f"Screenshot failed: {error_msg}")
            
            # Check for Cloudflare detection
            if any(keyword.lower() in error_msg.lower() for keyword in CLOUDFLARE_CHECK_KEYWORDS):
                print("Cloudflare challenge detected, retrying with different parameters...")
                # Retry with different parameters for Cloudflare
                params.update({
                    "wait_until": "load",
                    "delay": 5
                })
                response = requests.get(api_url, params=params)
                
                if response.status_code == 200 and response.headers.get('content-type', '').startswith('image'):
                    with open(filepath, 'wb') as f:
                        f.write(response.content)
                    print(f"Screenshot taken successfully after Cloudflare retry")
                    return filepath
            
            return None
        
    except Exception as e:
        print(f"Error taking screenshot: {e}")
        return None

def resize_if_needed(image_path, max_mb=1, target_height=720):
    file_size = os.path.getsize(image_path) / (1024 * 1024)  # dalam MB
    if file_size > max_mb:
        try:
            with Image.open(image_path) as img:
                width, height = img.size
                if height > target_height:
                    ratio = target_height / float(height)
                    new_width = int(float(width) * ratio)
                    img = img.resize((new_width, target_height), Image.Resampling.LANCZOS)
                    img.save(image_path, optimize=True, quality=85)
                    print(f"Image resized to {new_width}x{target_height}")
        except Exception as e:
            print(f"Resize error: {e}")
            
def easyocr_extract(image_path):
    try:
        results = reader.readtext(image_path, detail=0)
        text = " ".join(results)
        print(f"OCR text extracted from EasyOCR: {len(text)} characters")
        return text.strip()
    except Exception as e:
        print(f"EasyOCR error: {e}")
        return ""
    
# def extract_text_from_image(image_path):
#     print("Skipping OCR. Forcing Image-Only prediction.")
#     return ""

def extract_text_from_image(image_path):
    try:
        resize_if_needed(image_path, max_mb=1, target_height=720)  # Tambahkan ini di awal
        file_size = os.path.getsize(image_path) / (1024 * 1024)  # ukuran MB

        if file_size < 1:
            print(f"Using OCR.Space API for image ({file_size:.2f} MB)")
            api_key = os.getenv("OCR_SPACE_API_KEY")
            if not api_key:
                print("OCR_SPACE_API_KEY not found in environment. Using EasyOCR as fallback.")
                return easyocr_extract(image_path)

            with open(image_path, 'rb') as f:
                payload = {
                    'isOverlayRequired': False,
                    'apikey': api_key,
                    'language': 'eng'
                }
                r = requests.post('https://api.ocr.space/parse/image',
                                  files={'filename': f},
                                  data=payload)
            result = r.json()
            if result.get('IsErroredOnProcessing', False):
                print(f"OCR.Space API Error: {result.get('ErrorMessage')}")
                return easyocr_extract(image_path)
            text = result['ParsedResults'][0]['ParsedText']
            print(f"OCR text extracted from OCR.Space: {len(text)} characters")
            return text.strip()
        else:
            print(f"Using EasyOCR for image ({file_size:.2f} MB)")
            return easyocr_extract(image_path)
    except Exception as e:
        print(f"OCR error: {e}")
        return ""

def prepare_data_for_model(image_path, text):
    image = Image.open(image_path)
    image_tensor = transform(image).unsqueeze(0).to(device)

    clean_text_data = clean_text(text)
    encoding = tokenizer.encode_plus(
        clean_text_data,
        add_special_tokens=True,
        max_length=128,
        padding='max_length',
        truncation=True,
        return_tensors='pt'
    )

    input_ids = encoding['input_ids'].to(device)
    attention_mask = encoding['attention_mask'].to(device)

    return image_tensor, input_ids, attention_mask

def predict_single_url(url):
    print(f"Processing URL: {url}")
    screenshot_path = take_screenshot(url)
    if not screenshot_path:
        return f"❌ Error: Unable to capture screenshot for {url}. This may be due to:\n• Too many redirects\n• Website blocking automated access\n• Network connectivity issues\n• Invalid URL", "Screenshot capture failed", None, "", ""

    text = extract_text_from_image(screenshot_path)
    raw_text = text  # Store raw text before cleaning

    if not text.strip():  # Jika text kosong
        print(f"No OCR text found for {url}. Using Image-Only Model.")
        image = Image.open(screenshot_path)
        image_tensor = transform(image).unsqueeze(0).to(device)

        with torch.no_grad():
            image_logits = image_only_model(image_tensor).squeeze(1)
            image_probs = torch.sigmoid(image_logits)

            threshold = 0.6
            is_gambling = image_probs[0] > threshold

        label = "Gambling" if is_gambling else "Non-Gambling"
        confidence = image_probs[0].item() if is_gambling else 1 - image_probs[0].item()
        print(f"[Image-Only] URL: {url}")
        print(f"Prediction: {label} | Confidence: {confidence:.2f}\n")
        return label, f"Confidence: {confidence:.2f} (Image-Only Model)", screenshot_path, raw_text, ""

    else:
        clean_text_data = clean_text(text)
        image_tensor, input_ids, attention_mask = prepare_data_for_model(screenshot_path, text)

        with torch.no_grad():
            fused_logits, image_logits, text_logits, weights = fusion_model(image_tensor, input_ids, attention_mask)
            fused_probs = torch.sigmoid(fused_logits)
            image_probs = torch.sigmoid(image_logits)
            text_probs = torch.sigmoid(text_logits)

            threshold = 0.6
            is_gambling = fused_probs[0] > threshold

        label = "Gambling" if is_gambling else "Non-Gambling"
        confidence = fused_probs[0].item() if is_gambling else 1 - fused_probs[0].item()

        # ✨ Log detail
        print(f"[Fusion Model] URL: {url}")
        print(f"Image Model Prediction Probability: {image_probs[0]:.2f}")
        print(f"Text Model Prediction Probability: {text_probs[0]:.2f}")
        print(f"Fusion Final Prediction: {label} | Confidence: {confidence:.2f}\n")

        return label, f"Confidence: {confidence:.2f} (Fusion Model)", screenshot_path, raw_text, clean_text_data

def predict_batch_urls(file_obj):
    results = []
    content = file_obj.read().decode('utf-8')
    urls = [line.strip() for line in content.splitlines() if line.strip()]
    for url in urls:
        label, confidence, screenshot_path, raw_text, cleaned_text = predict_single_url(url)
        results.append({
            "url": url, 
            "label": label, 
            "confidence": confidence, 
            "screenshot_path": screenshot_path, 
            "raw_text": raw_text, 
            "cleaned_text": cleaned_text
        })

    df = pd.DataFrame(results)
    print(f"Batch prediction completed for {len(urls)} URLs.")
    return df

# --- Gradio App ---

with gr.Blocks() as app:
    gr.Markdown("# 🕵️ Gambling Website Detection (URL Based)")

    with gr.Tab("Single URL"):
        url_input = gr.Textbox(label="Enter Website URL")
        predict_button = gr.Button("Predict")
        
        with gr.Row():
            with gr.Column():
                label_output = gr.Label()
                confidence_output = gr.Textbox(label="Confidence", interactive=False)
                
            with gr.Column():
                screenshot_output = gr.Image(label="Screenshot", type="filepath")
                
        with gr.Row():
            with gr.Column():
                raw_text_output = gr.Textbox(label="Raw OCR Text", lines=5)
            with gr.Column():
                cleaned_text_output = gr.Textbox(label="Cleaned Text", lines=5)

        predict_button.click(
            fn=predict_single_url, 
            inputs=url_input, 
            outputs=[
                label_output, 
                confidence_output, 
                screenshot_output,
                raw_text_output,
                cleaned_text_output
            ]
        )

    with gr.Tab("Batch URLs"):
        file_input = gr.File(label="Upload .txt file with URLs (one per line)")
        batch_predict_button = gr.Button("Batch Predict")
        batch_output = gr.DataFrame()

        batch_predict_button.click(fn=predict_batch_urls, inputs=file_input, outputs=batch_output)

app.launch()