File size: 23,254 Bytes
c329d21
 
 
 
 
 
 
 
 
 
2e4a786
c329d21
 
 
 
 
 
 
 
f9bdea7
 
c329d21
bf89d59
 
 
 
c0af825
 
 
 
 
 
 
bf89d59
c0af825
bf89d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0af825
 
 
 
 
 
 
 
 
 
 
bf89d59
 
 
 
 
 
 
 
 
 
 
 
 
 
c329d21
 
 
 
 
 
4e933a0
34765d1
2af5ea1
 
 
 
 
 
 
 
 
 
 
 
34765d1
 
4e933a0
 
 
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589504e
 
 
 
 
 
 
 
 
 
 
f9bdea7
 
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e4a786
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0af825
 
 
 
 
 
 
 
 
0d1f775
 
 
 
 
 
 
 
 
 
c0af825
 
 
 
 
 
 
 
 
 
 
0d1f775
 
c0af825
 
 
 
7646a9b
c0af825
 
 
7646a9b
c0af825
 
7646a9b
 
c0af825
 
7646a9b
 
 
 
 
 
 
 
 
 
c0af825
 
 
7646a9b
 
 
 
 
 
c0af825
 
0d1f775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c329d21
bf89d59
 
c329d21
 
0d1f775
 
 
 
 
bf89d59
0d1f775
 
 
 
bf89d59
0d1f775
 
 
 
 
 
 
 
 
 
bf89d59
7646a9b
0d1f775
 
 
 
 
 
 
 
c0af825
0d1f775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7646a9b
0d1f775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9bdea7
0d1f775
 
 
 
 
 
 
 
 
 
 
 
c329d21
4e933a0
c329d21
 
 
 
 
4e933a0
 
 
 
c329d21
4e933a0
c329d21
 
 
 
 
4e933a0
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277db83
c329d21
277db83
 
c329d21
277db83
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277db83
c329d21
 
277db83
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277db83
c329d21
 
 
 
 
 
277db83
 
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
277db83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c329d21
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import gradio as gr
import os
import re
import time
import torch
import torch.nn as nn
from PIL import Image
import pytesseract
from playwright.sync_api import sync_playwright
import asyncio
from transformers import AutoTokenizer, BertTokenizerFast
from torchvision import transforms
from torchvision import models
from torchvision.transforms import functional as F
import pandas as pd
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings("ignore")
from pathlib import Path
import subprocess
import traceback

# =============================================
# CONFIGURATION
# =============================================

BLOCK_PATTERNS = [
    "doubleclick", "adservice", "googlesyndication", "ads", "adserver", "cookie", "consent",
    "analytics", "tracker", "tracking", "stats", "metric", "telemetry", "social", "facebook",
    "twitter", "linkedin", "pinterest", "popup", "notification", "banner"
]
PAGE_TIMEOUT = 30000  # reduced to 30 seconds
WAIT_FOR_LOAD_TIMEOUT = 5000  # reduced to 5 seconds
CLOUDFLARE_CHECK_KEYWORDS = ["Checking your browser", "Just a moment", "Cloudflare"]
MAX_REDIRECTS = 5  # Maximum number of redirects to follow

# =============================================
# HELPER FUNCTIONS
# =============================================

def ensure_http(url):
    if not url.startswith(('http://', 'https://')):
        return 'http://' + url
    return url

def sanitize_filename(url):
    return re.sub(r'[^\w\-_\. ]', '_', url)

def block_ads_and_cookies(page):
    def route_intercept(route):
        if any(resource in route.request.url.lower() for resource in BLOCK_PATTERNS):
            route.abort()
        else:
            route.continue_()
    page.route("**/*", route_intercept)

def wait_for_page_stable(page):
    try:
        # First wait for DOM content
        page.wait_for_load_state('domcontentloaded', timeout=PAGE_TIMEOUT)
        
        # Then wait for network to be idle
        try:
            page.wait_for_load_state('networkidle', timeout=WAIT_FOR_LOAD_TIMEOUT)
        except:
            print("Network not fully idle, continuing anyway...")
        
        # Small additional wait
        time.sleep(2)
    except Exception as e:
        print(f"⚠️  Page not fully stable: {e}")

def detect_and_bypass_cloudflare(page):
    try:
        content = page.content()
        if any(keyword.lower() in content.lower() for keyword in CLOUDFLARE_CHECK_KEYWORDS):
            print("⚡ Detected Cloudflare challenge, waiting 5 seconds...")
            time.sleep(5)
            page.reload()
            wait_for_page_stable(page)
    except Exception as e:
        print(f"⚠️  Failed to bypass Cloudflare: {e}")

# --- Setup ---

# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load tokenizer with proper error handling
try:
    # # Try to load from local tokenizer directory
    # tokenizer_path = '/app/tokenizers/indobert-base-p1'
    # if os.path.exists(tokenizer_path):
    #     print(f"Loading tokenizer from local path: {tokenizer_path}")
    #     tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
    # else:
    #     # If local not available, try direct download with cache
    #     print("Local tokenizer not found, downloading from Hugging Face...")
    #     # tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p1', 
    #     #                                          use_fast=True,
    #     #                                          cache_dir='/app/tokenizers')
    tokenizer = BertTokenizerFast.from_pretrained("indobenchmark/indobert-base-p1")
except Exception as e:
    print(f"Error loading tokenizer: {e}")
    # Fallback to default BERT tokenizer if needed
    print("Falling back to default BERT tokenizer")
    tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')

# Image transformation
class ResizePadToSquare:
    def __init__(self, target_size=300):
        self.target_size = target_size

    def __call__(self, img):
        img = img.convert("RGB")
        img.thumbnail((self.target_size, self.target_size), Image.BILINEAR)
        delta_w = self.target_size - img.size[0]
        delta_h = self.target_size - img.size[1]
        padding = (delta_w // 2, delta_h // 2, delta_w - delta_w // 2, delta_h - delta_h // 2)
        img = F.pad(img, padding, fill=0, padding_mode='constant')
        return img

transform = transforms.Compose([
    ResizePadToSquare(300),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                         std=[0.229, 0.224, 0.225]),
])

# Jalankan ini sekali di awal startup aplikasi (misalnya di main file / sebelum model load)
def ensure_playwright_chromium():
    try:
        print("Checking and installing Playwright Chromium if not present...")
        subprocess.run(["playwright", "install", "chromium"], check=True)
        print("Playwright Chromium installation completed.")
    except Exception as e:
        print("Error during Playwright Chromium installation:", e)
        traceback.print_exc()

# Pastikan dipanggil saat startup (di luar fungsi screenshot)
ensure_playwright_chromium()

# Screenshot folder
SCREENSHOT_DIR = "screenshots"
os.makedirs(SCREENSHOT_DIR, exist_ok=True)

# Set Tesseract language
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'  # Path to tesseract in Docker
print("Tesseract OCR initialized.")

# --- Model ---
class LateFusionModel(nn.Module):
    def __init__(self, image_model, text_model):
        super(LateFusionModel, self).__init__()
        self.image_model = image_model
        self.text_model = text_model
        self.image_weight = nn.Parameter(torch.tensor(0.5))
        self.text_weight = nn.Parameter(torch.tensor(0.5))

    def forward(self, images, input_ids, attention_mask):
        with torch.no_grad():
            image_logits = self.image_model(images).squeeze(1)
            text_logits = self.text_model(input_ids=input_ids, attention_mask=attention_mask).logits.squeeze(1)

        weights = torch.softmax(torch.stack([self.image_weight, self.text_weight]), dim=0)
        fused_logits = weights[0] * image_logits + weights[1] * text_logits

        return fused_logits, image_logits, text_logits, weights

# Load model
model_path = "models/best_fusion_model.pt"
if os.path.exists(model_path):
    fusion_model = torch.load(model_path, map_location=device, weights_only=False)
else:
    model_path = hf_hub_download(repo_id="azzandr/gambling-fusion-model", filename="best_fusion_model.pt")
    fusion_model = torch.load(model_path, map_location=device, weights_only=False)

fusion_model.to(device)
fusion_model.eval()
print("Fusion model loaded successfully!")

# Load Image-Only Model
# Load image model from state_dict
image_model_path = "models/best_image_model_Adam_lr0.0001_bs32_state_dict.pt"
if os.path.exists(image_model_path):
    image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
    num_features = image_only_model.classifier[1].in_features
    image_only_model.classifier = nn.Linear(num_features, 1)
    image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
    image_only_model.to(device)
    image_only_model.eval()
    print("Image-only model loaded from state_dict successfully!")
else:
    # Download from HuggingFace if local file doesn't exist
    image_model_path = hf_hub_download(repo_id="azzandr/gambling-image-model", 
                                      filename="best_image_model_Adam_lr0.0001_bs32_state_dict.pt")
    image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
    num_features = image_only_model.classifier[1].in_features
    image_only_model.classifier = nn.Linear(num_features, 1)
    image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
    image_only_model.to(device)
    image_only_model.eval()
    print("Image-only model loaded from HuggingFace successfully!")

# --- Functions ---
def clean_text(text):
    exceptions = {
        "di", "ke", "ya"
    }
    # ----- BASIC CLEANING -----
    text = re.sub(r"http\S+", "", text)  # Hapus URL
    text = re.sub(r"\n", " ", text)  # Ganti newline dengan spasi
    text = re.sub(r"[^a-zA-Z']", " ", text)  # Hanya sisakan huruf dan apostrof
    text = re.sub(r"\s{2,}", " ", text).strip().lower()  # Hapus spasi ganda, ubah ke lowercase

    # ----- FILTERING -----
    words = text.split()
    filtered_words = [
        w for w in words
        if (len(w) > 2 or w in exceptions)  # Simpan kata >2 huruf atau ada di exceptions
    ]
    text = ' '.join(filtered_words)

    # ----- REMOVE UNWANTED PATTERNS -----
    text = re.sub(r'\b[aeiou]+\b', '', text)  # Hapus kata semua vokal (panjang berapa pun)
    text = re.sub(r'\b[^aeiou\s]+\b', '', text)  # Hapus kata semua konsonan (panjang berapa pun)
    text = re.sub(r'\b\w{20,}\b', '', text)  # Hapus kata sangat panjang (≥20 huruf)
    text = re.sub(r'\s+', ' ', text).strip()  # Bersihkan spasi ekstra

    # check words number
    if len(text.split()) < 5:
        print(f"Cleaned text too short ({len(text.split())} words). Ignoring text.")
        return ""  # empty return to use image-only
    return text

def create_browser_context(playwright):
    return playwright.chromium.launch(
        args=[
            '--disable-features=IsolateOrigins,site-per-process',
            '--disable-web-security',
            '--disable-site-isolation-trials',
            '--disable-setuid-sandbox',
            '--no-sandbox',
            '--disable-gpu',
            '--disable-dev-shm-usage',
            '--disable-extensions',
            '--disable-plugins',
            '--disable-background-timer-throttling',
            '--disable-backgrounding-occluded-windows',
            '--disable-renderer-backgrounding',
            '--no-first-run',
            '--no-default-browser-check',
            '--disable-translate',
            '--disable-ipc-flooding-protection'
        ]
    ).new_context(
        viewport={"width": 1280, "height": 800},
        user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36",
        ignore_https_errors=True,
        java_script_enabled=True,
        bypass_csp=True,
        extra_http_headers={
            "Accept-Language": "en-US,en;q=0.9",
            "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
            "Connection": "keep-alive",
            "DNT": "1",
            "Cache-Control": "no-cache"
        }
    )

def setup_request_interception(page):
    redirect_urls = set()
    
    def handle_request(route):
        request = route.request
        url = request.url
        
        # Block known ad/tracking patterns
        if any(pattern in url.lower() for pattern in BLOCK_PATTERNS):
            print(f"Blocking request to: {url}")
            route.abort()
            return
            
        # Track potential redirects by monitoring navigation requests
        if request.resource_type == "document":
            if url in redirect_urls:
                if len(redirect_urls) > MAX_REDIRECTS:
                    print(f"Too many redirects (>{MAX_REDIRECTS}), aborting request")
                    route.abort()
                    return
            redirect_urls.add(url)
            
        # Continue with the request
        route.continue_()
    
    # Listen for response events to detect redirects
    def handle_response(response):
        if response.status >= 300 and response.status <= 399:
            redirect_urls.add(response.url)
    
    page.on("response", handle_response)
    page.route("**/*", handle_request)

def try_navigation_strategies(page, url):
    strategies = [
        {"wait_until": "commit", "timeout": 15000},
        {"wait_until": "domcontentloaded", "timeout": 10000},
        {"wait_until": "load", "timeout": 20000},
        {"wait_until": "networkidle", "timeout": 30000}
    ]
    
    for i, strategy in enumerate(strategies):
        try:
            print(f"Trying navigation strategy {i+1}: {strategy}")
            response = page.goto(url, **strategy)
            print(f"Navigation successful with strategy {i+1}")
            return response
        except Exception as e:
            print(f"Strategy {i+1} failed: {e}")
            if "ERR_TOO_MANY_REDIRECTS" in str(e):
                print(f"Redirect error detected, trying next strategy...")
                continue
            elif i == len(strategies) - 1:  # Last strategy
                raise e
            continue
    
    raise Exception("All navigation strategies failed")

def take_screenshot(url):
    url = ensure_http(url)
    filename = sanitize_filename(url) + '.png'
    filepath = os.path.join(SCREENSHOT_DIR, filename)
    
    max_retries = 3
    
    for attempt in range(max_retries):
        try:
            print(f"\n=== [SCREENSHOT ATTEMPT {attempt + 1}/{max_retries}] URL: {url} ===")
            
            with sync_playwright() as p:
                print("Launching browser with aggressive configuration...")
                context = create_browser_context(p)
                page = context.new_page()
                
                # Only set up basic request blocking for this attempt
                if attempt == 0:
                    print("Setting up basic request interception...")
                    def simple_block(route):
                        url_lower = route.request.url.lower()
                        if any(pattern in url_lower for pattern in BLOCK_PATTERNS):
                            route.abort()
                        else:
                            route.continue_()
                    page.route("**/*", simple_block)
                
                try:
                    # Try different navigation strategies
                    if attempt == 0:
                        # First attempt: aggressive but safe
                        response = try_navigation_strategies(page, url)
                    elif attempt == 1:
                        # Second attempt: minimal approach
                        print("Trying minimal navigation approach...")
                        response = page.goto(url, wait_until="commit", timeout=10000)
                    else:
                        # Third attempt: just try to load anything
                        print("Trying basic navigation...")
                        response = page.goto(url, timeout=15000)
                    
                    if response:
                        print(f"Response status: {response.status}")
                    
                    # Try to wait for some content
                    try:
                        page.wait_for_timeout(3000)  # Just wait 3 seconds
                        if attempt == 0:
                            wait_for_page_stable(page)
                    except Exception as e:
                        print(f"Page stability warning: {e}")
                    
                    # Take screenshot
                    print("Taking screenshot...")
                    page.screenshot(path=filepath)
                    
                    # If we get here, screenshot was successful
                    context.close()
                    print(f"Screenshot saved successfully to {filepath}")
                    return filepath
                    
                except Exception as nav_error:
                    print(f"Navigation error on attempt {attempt + 1}: {nav_error}")
                    
                    # Try to take screenshot of whatever we have
                    try:
                        if page.url != "about:blank":
                            print("Taking screenshot of partial page...")
                            page.screenshot(path=filepath)
                            context.close()
                            if os.path.exists(filepath):
                                print(f"Partial screenshot saved to {filepath}")
                                return filepath
                    except Exception as screenshot_error:
                        print(f"Failed to take partial screenshot: {screenshot_error}")
                    
                    context.close()
                    
                    # If this is the last attempt, raise the error
                    if attempt == max_retries - 1:
                        raise nav_error
                    else:
                        print(f"Retrying with different approach...")
                        time.sleep(2)  # Wait before retry
                        continue

        except Exception as e:
            print(f"[ERROR] Attempt {attempt + 1} failed: {e}")
            if attempt == max_retries - 1:
                print(f"All {max_retries} attempts failed for URL: {url}")
                traceback.print_exc()
                return None
            else:
                print("Waiting before next attempt...")
                time.sleep(3)
                continue
    
    return None

def resize_if_needed(image_path, max_mb=1, target_width=720):
    file_size = os.path.getsize(image_path) / (1024 * 1024)  # dalam MB
    if file_size > max_mb:
        try:
            with Image.open(image_path) as img:
                width, height = img.size
                if width > target_width:
                    ratio = target_width / float(width)
                    new_height = int((float(height) * float(ratio)))
                    img = img.resize((target_width, new_height), Image.Resampling.LANCZOS)
                    img.save(image_path, optimize=True, quality=85)
                    print(f"Image resized to {target_width}x{new_height}")
        except Exception as e:
            print(f"Resize error: {e}")

def extract_text_from_image(image_path):
    try:
        resize_if_needed(image_path, max_mb=1, target_width=720)
        
        # Use Tesseract OCR with Indonesian language
        text = pytesseract.image_to_string(Image.open(image_path), lang='ind')
        print(f"OCR text extracted with Tesseract: {len(text)} characters")
        
        return text.strip()
    except Exception as e:
        print(f"Tesseract OCR error: {e}")
        return ""

def prepare_data_for_model(image_path, text):
    image = Image.open(image_path)
    image_tensor = transform(image).unsqueeze(0).to(device)

    clean_text_data = clean_text(text)
    encoding = tokenizer.encode_plus(
        clean_text_data,
        add_special_tokens=True,
        max_length=128,
        padding='max_length',
        truncation=True,
        return_tensors='pt'
    )

    input_ids = encoding['input_ids'].to(device)
    attention_mask = encoding['attention_mask'].to(device)

    return image_tensor, input_ids, attention_mask

def predict_single_url(url):
    if not url.startswith(('http://', 'https://')):
        url = 'https://' + url
        
    screenshot_path = take_screenshot(url)
    if not screenshot_path:
        return f"Error: Failed to take screenshot for {url}", None, None, None, None

    raw_text = extract_text_from_image(screenshot_path)
    cleaned_text = clean_text(raw_text) if raw_text.strip() else ""

    if not raw_text.strip():  # Jika text kosong
        print(f"No OCR text found for {url}. Using Image-Only Model.")
        image = Image.open(screenshot_path)
        image_tensor = transform(image).unsqueeze(0).to(device)

        with torch.no_grad():
            image_logits = image_only_model(image_tensor).squeeze(1)
            image_probs = torch.sigmoid(image_logits)

            threshold = 0.6
            is_gambling = image_probs[0] > threshold

        label = "Gambling" if is_gambling else "Non-Gambling"
        confidence = image_probs[0].item() if is_gambling else 1 - image_probs[0].item()
        print(f"[Image-Only] URL: {url}")
        print(f"Prediction: {label} | Confidence: {confidence:.2f}\n")
        return label, f"Confidence: {confidence:.2f}", screenshot_path, raw_text, cleaned_text

    else:
        image_tensor, input_ids, attention_mask = prepare_data_for_model(screenshot_path, raw_text)

        with torch.no_grad():
            fused_logits, image_logits, text_logits, weights = fusion_model(image_tensor, input_ids, attention_mask)
            fused_probs = torch.sigmoid(fused_logits)
            image_probs = torch.sigmoid(image_logits)
            text_probs = torch.sigmoid(text_logits)

            threshold = 0.6
            is_gambling = fused_probs[0] > threshold

        label = "Gambling" if is_gambling else "Non-Gambling"
        confidence = fused_probs[0].item() if is_gambling else 1 - fused_probs[0].item()

        # ✨ Log detail
        print(f"[Fusion Model] URL: {url}")
        print(f"Image Model Prediction Probability: {image_probs[0]:.2f}")
        print(f"Text Model Prediction Probability: {text_probs[0]:.2f}")
        print(f"Fusion Final Prediction: {label} | Confidence: {confidence:.2f}\n")

        return label, f"Confidence: {confidence:.2f}", screenshot_path, raw_text, cleaned_text

def predict_batch_urls(file_obj):
    results = []
    content = file_obj.read().decode('utf-8')
    urls = [line.strip() for line in content.splitlines() if line.strip()]
    for url in urls:
        label, confidence, screenshot_path, raw_text, cleaned_text = predict_single_url(url)
        results.append({"url": url, "label": label, "confidence": confidence, "screenshot_path": screenshot_path, "raw_text": raw_text, "cleaned_text": cleaned_text})

    df = pd.DataFrame(results)
    print(f"Batch prediction completed for {len(urls)} URLs.")
    return df

# --- Gradio App ---

with gr.Blocks() as app:
    gr.Markdown("# 🕵️ Gambling Website Detection (URL Based)")
    gr.Markdown("### Using Playwright & Tesseract OCR")

    with gr.Tab("Single URL"):
        url_input = gr.Textbox(label="Enter Website URL")
        predict_button = gr.Button("Predict")
        
        with gr.Row():
            with gr.Column():
                label_output = gr.Label()
                confidence_output = gr.Textbox(label="Confidence", interactive=False)
                
            with gr.Column():
                screenshot_output = gr.Image(label="Screenshot", type="filepath")
                
        with gr.Row():
            with gr.Column():
                raw_text_output = gr.Textbox(label="Raw OCR Text", lines=5)
            with gr.Column():
                cleaned_text_output = gr.Textbox(label="Cleaned Text", lines=5)

        predict_button.click(
            fn=predict_single_url, 
            inputs=url_input, 
            outputs=[label_output, confidence_output, screenshot_output, raw_text_output, cleaned_text_output]
        )

    with gr.Tab("Batch URLs"):
        file_input = gr.File(label="Upload .txt file with URLs (one per line)")
        batch_predict_button = gr.Button("Batch Predict")
        batch_output = gr.DataFrame()

        batch_predict_button.click(fn=predict_batch_urls, inputs=file_input, outputs=batch_output)

if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860)