import os from dotenv import load_dotenv from langchain.memory import ConversationBufferWindowMemory from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, HumanMessagePromptTemplate from langchain.chains import ConversationChain from langchain_mongodb.chat_message_histories import MongoDBChatMessageHistory from langchain_openai import ChatOpenAI from langchain_groq import ChatGroq load_dotenv() class ChatBot: def __init__(self, session_id): self.session_id = session_id self.mongo_conn_str = "mongodb+srv://dhara732002:6M2rikdwZxvwMzN0@cluster0.pbzipls.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0" def create_llm_chain(self): prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant.You should give respnse in 1-2 lines without new line."), MessagesPlaceholder(variable_name="history"), HumanMessagePromptTemplate.from_template("{input}"), ] ) message_history = MongoDBChatMessageHistory(connection_string=self.mongo_conn_str, session_id=self.session_id) memory = ConversationBufferWindowMemory(memory_key="history", chat_memory=message_history, return_messages=True, k=3) conversation_chain = ConversationChain( llm=ChatGroq(temperature=0, groq_api_key=os.getenv("GROQ_API_KEY"), model_name="llama3-70b-8192"), prompt=prompt, verbose=True, memory=memory, ) self.conversation_chain = conversation_chain return "Chain created successfully" def get_response(self, question): ans= self.conversation_chain.predict(input=question) return ans