maxiaolong03
add files
5d55daf
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains the code for the chatbot demo using Gradio."""
import argparse
import base64
import json
import logging
import os
from argparse import ArgumentParser
from collections import namedtuple
from functools import partial
import gradio as gr
from bot_requests import BotClient
os.environ["NO_PROXY"] = "localhost,127.0.0.1" # Disable proxy
logging.root.setLevel(logging.INFO)
MULTI_MODEL_PREFIX = "ERNIE-4.5-VL"
def get_args() -> argparse.Namespace:
"""
Parses and returns command line arguments for configuring the chatbot demo.
Sets up argument parser with default values for server configuration and model endpoints.
The arguments include:
- Server port and name for the Gradio interface
- Character limits and retry settings for conversation handling
- Model name to endpoint mappings for the chatbot
Returns:
argparse.Namespace: Parsed command line arguments containing all the above settings
"""
parser = ArgumentParser(description="ERNIE models web chat demo.")
parser.add_argument(
"--server-port", type=int, default=7860, help="Demo server port."
)
parser.add_argument(
"--server-name", type=str, default="0.0.0.0", help="Demo server name."
)
parser.add_argument(
"--max_char",
type=int,
default=8000,
help="Maximum character limit for messages.",
)
parser.add_argument(
"--max_retry_num", type=int, default=3, help="Maximum retry number for request."
)
parser.add_argument(
"--model_name_map",
type=str,
default="""{
"ERNIE-4.5-300B-A47B": "ernie-4.5-turbo-128k-preview",
"ERNIE-4.5-21B-A3B": "ernie-4.5-21b-a3b",
"ERNIE-4.5-0.3B": "ernie-4.5-0.3b",
"ERNIE-4.5-VL-424B-A47B": "ernie-4.5-turbo-vl-preview",
"ERNIE-4.5-VL-28B-A3B": "ernie-4.5-vl-28b-a3b"
}""",
help="""JSON string defining model name to internal name mappings.
Required Format:
{"model_name": "internal_model_name", ...}
Note:
- When specified, model_name must exist in model_map
- All names must be unique
- Defaults to empty mapping if not provided
- model_name MUST follow prefix rules:
* ERNIE-4.5[-*]: Text-only model
* ERNIE-4.5-VL[-*]: Multimodal models (image+text)
""",
)
parser.add_argument(
"--model_map",
type=str,
default="""{
"ERNIE-4.5-300B-A47B": "https://qianfan.baidubce.com/v2",
"ERNIE-4.5-21B-A3B": "https://qianfan.baidubce.com/v2",
"ERNIE-4.5-0.3B": "https://qianfan.baidubce.com/v2",
"ERNIE-4.5-VL-424B-A47B": "https://qianfan.baidubce.com/v2",
"ERNIE-4.5-VL-28B-A3B": "https://qianfan.baidubce.com/v2"
}""",
help="""JSON string defining model name to endpoint mappings.
Required Format:
{"model_name": "http://localhost:port/v1", ...}
Note:
- When specified, model_name must exist in model_name_map
- All endpoints must be valid HTTP URLs
- At least one model must be specified
- model_name MUST follow prefix rules:
* ERNIE-4.5[-*]: Text-only model
* ERNIE-4.5-VL[-*]: Multimodal models (image+text)
""",
)
parser.add_argument(
"--api_key", type=str, default="bce-v3/xxx", help="Model service API key."
)
parser.add_argument(
"--concurrency_limit", type=int, default=10, help="Default concurrency limit."
)
parser.add_argument(
"--max_queue_size", type=int, default=50, help="Maximum queue size for request."
)
args = parser.parse_args()
try:
args.model_map = json.loads(args.model_map)
# Validation: Check at least one model exists
if len(args.model_map) < 1:
raise ValueError("model_map must contain at least one model configuration")
except json.JSONDecodeError as e:
raise ValueError("Invalid JSON format for --model_map") from e
try:
args.model_name_map = json.loads(args.model_name_map)
except json.JSONDecodeError as e:
raise ValueError("Invalid JSON format for --model_name_map") from e
if args.model_name_map:
for model_name in list(args.model_map.keys()):
internal_model = args.model_name_map.get(model_name, model_name)
args.model_map[internal_model] = args.model_map.pop(model_name)
else:
for key in args.model_map:
args.model_name_map[key] = key
return args
class GradioEvents:
"""
Central handler for all Gradio interface events in the chatbot demo. Provides static methods
for processing user interactions including:
- Response regeneration
- Conversation state management
- Image handling and URL conversion
- Component visibility control
Coordinates with BotClient to interface with backend models while maintaining
conversation history and handling multimodal inputs.
"""
@staticmethod
def get_image_url(image_path: str) -> str:
"""
Converts an image file at the given path to a base64 encoded data URL
that can be used directly in HTML or Gradio interfaces.
Reads the image file, encodes it in base64 format, and constructs
a data URL with the appropriate image MIME type.
Args:
image_path (str): Path to the image file.
Returns:
str: Image URL.
"""
base64_image = ""
extension = image_path.split(".")[-1]
with open(image_path, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
url = f"data:image/{extension};base64,{base64_image}"
return url
@staticmethod
def chat_stream(
query: str,
task_history: list,
image_history: dict,
model_name: str,
file_url: str,
system_msg: str,
max_tokens: int,
temperature: float,
top_p: float,
model_name_map: dict,
bot_client: BotClient,
) -> str:
"""
Handles streaming chat interactions by processing user queries and
generating real-time responses from the bot client. Constructs conversation
history including system messages, text inputs and image attachments, then
streams back model responses.
Args:
query (str): User input.
task_history (list): Task history.
image_history (dict): Image history.
model_name (str): Model name.
file_url (str): File URL.
system_msg (str): System message.
max_tokens (int): Maximum tokens.
temperature (float): Temperature.
top_p (float): Top p.
model_name_map (dict): Model name map.
bot_client (BotClient): Bot client.
Yields:
str: Model response.
"""
conversation = []
if system_msg:
conversation.append({"role": "system", "content": system_msg})
for idx, (query_h, response_h) in enumerate(task_history):
if idx in image_history:
content = []
content.append(
{
"type": "image_url",
"image_url": {
"url": GradioEvents.get_image_url(image_history[idx])
},
}
)
content.append({"type": "text", "text": query_h})
conversation.append({"role": "user", "content": content})
else:
conversation.append({"role": "user", "content": query_h})
conversation.append({"role": "assistant", "content": response_h})
content = []
if file_url and (
len(image_history) == 0 or file_url != list(image_history.values())[-1]
):
image_history[len(task_history)] = file_url
content.append(
{
"type": "image_url",
"image_url": {"url": GradioEvents.get_image_url(file_url)},
}
)
content.append({"type": "text", "text": query})
conversation.append({"role": "user", "content": content})
else:
conversation.append({"role": "user", "content": query})
try:
req_data = {"messages": conversation}
model_name = model_name_map.get(model_name, model_name)
for chunk in bot_client.process_stream(
model_name, req_data, max_tokens, temperature, top_p
):
if "error" in chunk:
raise Exception(chunk["error"])
message = chunk.get("choices", [{}])[0].get("delta", {})
content = message.get("content", "")
if content:
yield content
except Exception as e:
raise gr.Error("Exception: " + repr(e))
@staticmethod
def predict_stream(
query: str,
chatbot: list,
task_history: list,
image_history: dict,
model: str,
file_url: str,
system_msg: str,
max_tokens: int,
temperature: float,
top_p: float,
model_name_map: dict,
bot_client: BotClient,
) -> list:
"""
Processes user queries in a streaming manner by coordinating with the chat stream handler,
progressively updates the chatbot state with responses,
and maintains conversation history. Handles both text and multimodal inputs while preserving
the interactive chat experience with real-time updates.
Args:
query (str): The user's query.
chatbot (list): The current chatbot state.
task_history (list): The task history.
image_history (dict): The image history.
model (str): The model name.
file_url (str): The file URL.
system_msg (str): The system message.
max_tokens (int): The maximum token length of the generated response.
temperature (float): The temperature parameter used by the model.
top_p (float): The top_p parameter used by the model.
model_name_map (dict): The model name map.
bot_client (BotClient): The bot client.
Returns:
list: A list containing the updated chatbot state after processing the user's query.
"""
logging.info(f"User: {query}")
chatbot.append({"role": "user", "content": query})
# First yield the chatbot with user message
yield chatbot
new_texts = GradioEvents.chat_stream(
query,
task_history,
image_history,
model,
file_url,
system_msg,
max_tokens,
temperature,
top_p,
model_name_map,
bot_client,
)
response = ""
for new_text in new_texts:
response += new_text
# Remove previous message if exists
if chatbot[-1].get("role") == "assistant":
chatbot.pop(-1)
if response:
chatbot.append({"role": "assistant", "content": response})
yield chatbot
logging.info(f"History: {task_history}")
task_history.append((query, response))
logging.info(f"ERNIE models: {response}")
@staticmethod
def regenerate(
chatbot: list,
task_history: list,
image_history: dict,
model: str,
file_url: str,
system_msg: str,
max_tokens: int,
temperature: float,
top_p: float,
model_name_map: dict,
bot_client: BotClient,
) -> list:
"""
Reconstructs the conversation context by removing the last interaction and
reprocesses the user's previous query to generate a fresh response. Maintains
consistency in conversation flow while allowing response regeneration.
Args:
chatbot (list): The current chatbot state.
task_history (list): The task history.
image_history (dict): The image history.
model (str): The model name.
file_url (str): The file URL.
system_msg (str): The system message.
max_tokens (int): The maximum token length of the generated response.
temperature (float): The temperature parameter used by the model.
top_p (float): The top_p parameter used by the model.
model_name_map (dict): The model name map.
bot_client (BotClient): The bot client.
Yields:
list: A list containing the updated chatbot state after processing the user's query.
"""
if not task_history:
yield chatbot
return
# Pop the last user query and bot response from task_history
item = task_history.pop(-1)
if (len(task_history)) in image_history:
del image_history[len(task_history)]
while len(chatbot) != 0 and chatbot[-1].get("role") == "assistant":
chatbot.pop(-1)
chatbot.pop(-1)
yield from GradioEvents.predict_stream(
item[0],
chatbot,
task_history,
image_history,
model,
file_url,
system_msg,
max_tokens,
temperature,
top_p,
model_name_map,
bot_client,
)
@staticmethod
def reset_user_input() -> gr.update:
"""
Reset user input field value to empty string.
Returns:
gr.update: Update object representing the new value of the user input field.
"""
return gr.update(value="")
@staticmethod
def reset_state() -> tuple:
"""
Reset all states including chatbot, task_history, image_history, and file_btn.
Returns:
tuple: A tuple containing the following values:
- chatbot (list): An empty list that represents the cleared chatbot state.
- task_history (list): An empty list that represents the cleared task history.
- image_history (dict): An empty dictionary that represents the cleared image history.
- file_btn (gr.update): An update object that sets the value of the file button to None.
"""
GradioEvents.gc()
reset_result = namedtuple(
"reset_result", ["chatbot", "task_history", "image_history", "file_btn"]
)
return reset_result(
[], # clear chatbot
[], # clear task_history
{}, # clear image_history
gr.update(value=None), # clear file_btn
)
@staticmethod
def gc():
"""Run garbage collection to free up memory resources."""
import gc
gc.collect()
@staticmethod
def toggle_components_visibility(model_name: str) -> gr.update:
"""
Toggle visibility of components depending on the selected model name.
Args:
model_name (str): Name of the selected model.
Returns:
gr.update: An update object representing the visibility of the file button.
"""
return gr.update(
visible=model_name.upper().startswith(MULTI_MODEL_PREFIX)
) # file_btn
def launch_demo(args: argparse.Namespace, bot_client: BotClient):
"""
Launch demo program
Args:
args (argparse.Namespace): argparse Namespace object containing parsed command line arguments
bot_client (BotClient): Bot client instance
"""
css = """
#file-upload {
height: 90px !important;
min-height: 90px !important;
max-height: 90px !important;
}
/* Hide original Chinese text */
#file-upload .wrap {
font-size: 0 !important;
position: relative;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
}
/* Insert English prompt text below the SVG icon */
#file-upload .wrap::after {
content: "Drag and drop files here or click to upload";
font-size: 15px;
color: #555;
white-space: nowrap;
}
"""
with gr.Blocks(css=css) as demo:
logo_url = GradioEvents.get_image_url("assets/logo.png")
gr.Markdown(
f"""\
<p align="center"><img src="{logo_url}" \
style="height: 60px"/><p>"""
)
gr.Markdown(
"""\
<center><font size=3> <a href="https://ernie.baidu.com/">ERNIE Bot</a> | \
<a href="https://github.com/PaddlePaddle/ERNIE">GitHub</a> | \
<a href="https://huggingface.co/baidu">Hugging Face</a> | \
<a href="https://aistudio.baidu.com/modelsoverview">BAIDU AI Studio</a> | \
<a href="https://yiyan.baidu.com/blog/publication/">Technical Report</a></center>"""
)
gr.Markdown(
"""\
<center><font size=3>This demo is based on ERNIE models. \
(本演示基于文心大模型实现。)</center>"""
)
chatbot = gr.Chatbot(
label="ERNIE", elem_classes="control-height", type="messages"
)
model_names = list(args.model_name_map.keys())
with gr.Row():
model_name = gr.Dropdown(
label="Select Model",
choices=model_names,
value=model_names[0],
allow_custom_value=True,
)
file_btn = gr.File(
label="Image upload (Active only for multimodal models. Accepted formats: PNG, JPEG, JPG)",
height="80px",
visible=True,
file_types=[".png", ".jpeg", ".jpg"],
elem_id="file-upload",
)
query = gr.Textbox(label="Input", elem_id="text_input")
with gr.Row():
empty_btn = gr.Button("🧹 Clear History(清除历史)")
submit_btn = gr.Button("🚀 Submit(发送)", elem_id="submit-button")
regen_btn = gr.Button("🤔️ Regenerate(重试)")
with gr.Accordion(
"⚙️ Advanced Config", open=False
): # open=False means collapsed by default
system_message = gr.Textbox(value="", label="System message", visible=True)
additional_inputs = [
system_message,
gr.Slider(
minimum=1, maximum=4096, value=2048, step=1, label="Max new tokens"
),
gr.Slider(
minimum=0.1, maximum=1.0, value=1.0, step=0.05, label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.05,
label="Top-p (nucleus sampling)",
),
]
task_history = gr.State([])
image_history = gr.State({})
model_name.change(
GradioEvents.toggle_components_visibility,
inputs=model_name,
outputs=file_btn,
)
model_name.change(
GradioEvents.reset_state,
outputs=[chatbot, task_history, image_history, file_btn],
show_progress=True,
)
predict_with_clients = partial(
GradioEvents.predict_stream,
model_name_map=args.model_name_map,
bot_client=bot_client,
)
regenerate_with_clients = partial(
GradioEvents.regenerate,
model_name_map=args.model_name_map,
bot_client=bot_client,
)
query.submit(
predict_with_clients,
inputs=[query, chatbot, task_history, image_history, model_name, file_btn]
+ additional_inputs,
outputs=[chatbot],
show_progress=True,
)
query.submit(GradioEvents.reset_user_input, [], [query])
submit_btn.click(
predict_with_clients,
inputs=[query, chatbot, task_history, image_history, model_name, file_btn]
+ additional_inputs,
outputs=[chatbot],
show_progress=True,
)
submit_btn.click(GradioEvents.reset_user_input, [], [query])
empty_btn.click(
GradioEvents.reset_state,
outputs=[chatbot, task_history, image_history, file_btn],
show_progress=True,
)
regen_btn.click(
regenerate_with_clients,
inputs=[chatbot, task_history, image_history, model_name, file_btn]
+ additional_inputs,
outputs=[chatbot],
show_progress=True,
)
demo.load(
GradioEvents.toggle_components_visibility,
inputs=gr.State(model_names[0]),
outputs=file_btn,
)
demo.queue(
default_concurrency_limit=args.concurrency_limit, max_size=args.max_queue_size
)
demo.launch(server_port=args.server_port, server_name=args.server_name)
def main():
"""Main function that runs when this script is executed."""
args = get_args()
bot_client = BotClient(args)
launch_demo(args, bot_client)
if __name__ == "__main__":
main()