Update app.py
Browse files
app.py
CHANGED
@@ -1,153 +1,156 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
-
from faster_whisper import WhisperModel
|
3 |
-
import torch
|
4 |
-
import io
|
5 |
-
import time
|
6 |
-
import datetime
|
7 |
-
from threading import Semaphore
|
8 |
import os
|
9 |
-
|
|
|
|
|
|
|
10 |
import tempfile
|
11 |
-
|
|
|
|
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# Device check for faster-whisper
|
24 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
-
compute_type = "float16" if device == "cuda" else "int8"
|
26 |
-
print(f"Using device: {device} with compute_type: {compute_type}")
|
27 |
-
|
28 |
-
# Faster Whisper setup with optimized parameters for long audio
|
29 |
-
beamsize = 2
|
30 |
-
wmodel = WhisperModel(
|
31 |
-
"guillaumekln/faster-whisper-small",
|
32 |
-
device=device,
|
33 |
-
compute_type=compute_type,
|
34 |
-
download_root="./model_cache"
|
35 |
-
)
|
36 |
-
|
37 |
-
# Concurrency control
|
38 |
request_semaphore = Semaphore(MAX_CONCURRENT_REQUESTS)
|
39 |
-
active_requests = 0
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
def cleanup_temp_files(*file_paths):
|
46 |
-
"""Ensure temporary files are deleted after processing"""
|
47 |
-
for file_path in file_paths:
|
48 |
try:
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
-
|
53 |
-
|
54 |
-
def extract_audio_from_video(video_path, output_audio_path):
|
55 |
-
"""Extract audio from a video file and save it as a temporary audio file"""
|
56 |
-
try:
|
57 |
-
video = VideoFileClip(video_path)
|
58 |
-
if video.duration > MAX_FILE_DURATION:
|
59 |
-
video.close()
|
60 |
-
raise ValueError(f"Video duration exceeds {MAX_FILE_DURATION} seconds")
|
61 |
-
video.audio.write_audiofile(output_audio_path)
|
62 |
-
video.close()
|
63 |
-
return output_audio_path
|
64 |
-
except Exception as e:
|
65 |
-
raise Exception(f"Failed to extract audio from video: {str(e)}")
|
66 |
|
67 |
@app.route("/health", methods=["GET"])
|
68 |
def health_check():
|
69 |
-
""
|
70 |
-
return jsonify({
|
71 |
-
'status': 'API is running',
|
72 |
-
'timestamp': datetime.datetime.now().isoformat(),
|
73 |
-
'device': device,
|
74 |
-
'compute_type': compute_type,
|
75 |
-
'active_requests': active_requests,
|
76 |
-
'max_duration_supported': MAX_FILE_DURATION,
|
77 |
-
'supported_formats': list(ALLOWED_EXTENSIONS)
|
78 |
-
})
|
79 |
|
80 |
@app.route("/status/busy", methods=["GET"])
|
81 |
-
def
|
82 |
-
""
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
89 |
|
90 |
-
@app.route("/whisper_transcribe", methods=["POST"])
|
91 |
-
def transcribe():
|
92 |
-
global active_requests
|
93 |
-
|
94 |
-
if not request_semaphore.acquire(blocking=False):
|
95 |
-
return jsonify({'error': 'Server busy'}), 503
|
96 |
-
|
97 |
-
active_requests += 1
|
98 |
-
start_time = time.time()
|
99 |
-
temp_file_path = None
|
100 |
-
temp_audio_path = None
|
101 |
-
|
102 |
-
try:
|
103 |
-
if 'file' not in request.files:
|
104 |
-
return jsonify({'error': 'No file provided'}), 400
|
105 |
-
|
106 |
-
file = request.files['file']
|
107 |
-
if not (file and allowed_file(file.filename)):
|
108 |
-
return jsonify({'error': f'Invalid file format. Supported: {", ".join(ALLOWED_EXTENSIONS)}'}), 400
|
109 |
-
|
110 |
-
# Save uploaded file to temporary location
|
111 |
-
temp_file_path = os.path.join(TEMPORARY_FOLDER, secure_filename(file.filename))
|
112 |
-
file.save(temp_file_path)
|
113 |
-
|
114 |
-
# Check if file is a video and extract audio if necessary
|
115 |
-
file_extension = file.filename.rsplit('.', 1)[1].lower()
|
116 |
-
if file_extension in ALLOWED_VIDEO_EXTENSIONS:
|
117 |
-
temp_audio_path = os.path.join(TEMPORARY_FOLDER, f"temp_audio_{int(time.time())}.wav")
|
118 |
-
extract_audio_from_video(temp_file_path, temp_audio_path)
|
119 |
-
transcription_file = temp_audio_path
|
120 |
-
else:
|
121 |
-
transcription_file = temp_file_path
|
122 |
-
|
123 |
-
# Transcribe the audio file
|
124 |
-
segments, _ = wmodel.transcribe(
|
125 |
-
transcription_file,
|
126 |
-
beam_size=beamsize,
|
127 |
-
vad_filter=True,
|
128 |
-
without_timestamps=True,
|
129 |
-
compression_ratio_threshold=2.4,
|
130 |
-
word_timestamps=False
|
131 |
-
)
|
132 |
-
|
133 |
-
full_text = " ".join(segment.text for segment in segments)
|
134 |
-
return jsonify({
|
135 |
-
'transcription': full_text,
|
136 |
-
'file_type': 'video' if file_extension in ALLOWED_VIDEO_EXTENSIONS else 'audio'
|
137 |
-
}), 200
|
138 |
-
|
139 |
-
except Exception as e:
|
140 |
-
return jsonify({'error': str(e)}), 500
|
141 |
-
|
142 |
-
finally:
|
143 |
-
cleanup_temp_files(temp_file_path, temp_audio_path)
|
144 |
-
active_requests -= 1
|
145 |
-
request_semaphore.release()
|
146 |
-
print(f"Processed in {time.time()-start_time:.2f}s (Active: {active_requests})")
|
147 |
|
148 |
if __name__ == "__main__":
|
149 |
-
|
150 |
-
if not os.path.exists(TEMPORARY_FOLDER):
|
151 |
-
os.makedirs(TEMPORARY_FOLDER)
|
152 |
-
|
153 |
-
app.run(host="0.0.0.0", port=7860, threaded=True)
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
import io
|
4 |
+
import whisperx
|
5 |
+
import torchaudio
|
6 |
+
import gc
|
7 |
import tempfile
|
8 |
+
import ffmpeg
|
9 |
+
from datetime import datetime
|
10 |
+
from threading import Semaphore
|
11 |
|
12 |
app = Flask(__name__)
|
13 |
|
14 |
+
# 从环境变量中读取 API_KEY
|
15 |
+
api_key = os.environ.get("API_KEY")
|
16 |
+
if not api_key:
|
17 |
+
print("Error: API_KEY environment variable not set!")
|
18 |
+
|
19 |
+
# 信号量,用于限制并发请求的数量
|
20 |
+
MAX_CONCURRENT_REQUESTS = 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
request_semaphore = Semaphore(MAX_CONCURRENT_REQUESTS)
|
|
|
22 |
|
23 |
+
# GPU device
|
24 |
+
device = "cuda"
|
25 |
+
compute_type = "float16"
|
26 |
+
|
27 |
+
def validate_api_key(request):
|
28 |
+
"""
|
29 |
+
验证 API Key. 从 request header 读取 API Key,并与环境变量中的 API Key 进行比较。
|
30 |
+
|
31 |
+
Args:
|
32 |
+
request: Flask request 对象.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
True 如果 API Key 有效,否则 False.
|
36 |
+
"""
|
37 |
+
api_key_header = request.headers.get("X-API-Key")
|
38 |
+
api_key_query = request.args.get("api_key")
|
39 |
+
api_key_form = request.form.get("api_key")
|
40 |
+
|
41 |
+
api_key_env = os.environ.get("API_KEY")
|
42 |
+
|
43 |
+
if not api_key_env:
|
44 |
+
return False, "API_KEY environment variable not set"
|
45 |
+
|
46 |
+
if api_key_header == api_key_env or api_key_query == api_key_env or api_key_form == api_key_env:
|
47 |
+
return True, None
|
48 |
+
else:
|
49 |
+
return False, "Invalid API Key"
|
50 |
+
|
51 |
+
|
52 |
+
@app.route("/whisper_transcribe", methods=["POST"])
|
53 |
+
def whisper_transcribe():
|
54 |
+
is_valid, message = validate_api_key(request) # 验证 API Key
|
55 |
+
if not is_valid:
|
56 |
+
return jsonify({"error": message}), 401
|
57 |
+
|
58 |
+
with request_semaphore:
|
59 |
+
if 'file' not in request.files:
|
60 |
+
return jsonify({'error': 'No file uploaded'}), 400
|
61 |
+
|
62 |
+
file = request.files['file']
|
63 |
+
if file.filename == '':
|
64 |
+
return jsonify({'error': 'No file selected'}), 400
|
65 |
+
|
66 |
+
filename = file.filename
|
67 |
+
file_extension = filename.rsplit('.', 1)[1].lower()
|
68 |
+
allowed_extensions = {'mp3', 'wav', 'ogg', 'm4a', 'flac', 'aac', 'wma', 'opus', 'aiff', 'mp4', 'avi', 'mov',
|
69 |
+
'mkv', 'webm', 'flv', 'wmv', 'mpeg', 'mpg', '3gp'}
|
70 |
+
if file_extension not in allowed_extensions:
|
71 |
+
return jsonify({'error': f'Invalid file format. Supported: {", ".join(allowed_extensions)}'}), 400
|
72 |
|
|
|
|
|
|
|
73 |
try:
|
74 |
+
# Save the uploaded file to a temporary file
|
75 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_extension}') as temp_file:
|
76 |
+
file.save(temp_file.name)
|
77 |
+
temp_file_path = temp_file.name
|
78 |
+
|
79 |
+
# Determine if the file is a video file
|
80 |
+
video_extensions = {'mp4', 'avi', 'mov', 'mkv', 'webm', 'flv', 'wmv', 'mpeg', 'mpg', '3gp'}
|
81 |
+
if file_extension in video_extensions:
|
82 |
+
file_type = "video"
|
83 |
+
try:
|
84 |
+
# Extract audio from video using ffmpeg
|
85 |
+
audio_file_path = tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name
|
86 |
+
ffmpeg.input(temp_file_path).output(audio_file_path, format='wav', acodec='pcm_s16le').run(quiet=True, overwrite_output=True)
|
87 |
+
except Exception as e:
|
88 |
+
return jsonify({'error': f'Failed to extract audio from video: {str(e)}'}), 500
|
89 |
+
|
90 |
+
# Delete the temporary video file
|
91 |
+
os.remove(temp_file_path)
|
92 |
+
audio_file_path_final = audio_file_path
|
93 |
+
else:
|
94 |
+
file_type = "audio"
|
95 |
+
audio_file_path_final = temp_file_path
|
96 |
+
|
97 |
+
# Load the audio file
|
98 |
+
try:
|
99 |
+
audio, samplerate = torchaudio.load(audio_file_path_final)
|
100 |
+
audio = audio.to(device)
|
101 |
+
if audio.shape[0] > 1:
|
102 |
+
audio = audio.mean(dim=0, keepdim=True)
|
103 |
+
audio = audio.squeeze()
|
104 |
+
if samplerate != 16000:
|
105 |
+
audio = torchaudio.functional.resample(audio, samplerate, 16000)
|
106 |
+
except Exception as e:
|
107 |
+
return jsonify({'error': f'Failed to load audio file: {str(e)}'}), 500
|
108 |
+
|
109 |
+
# Ensure the audio duration does not exceed 10 minutes
|
110 |
+
max_duration = 10 * 60 # 10 minutes in seconds
|
111 |
+
if audio.shape[-1] / 16000 > max_duration:
|
112 |
+
return jsonify({'error': 'Audio duration exceeds the maximum allowed duration of 10 minutes'}), 400
|
113 |
+
|
114 |
+
# Perform transcription
|
115 |
+
try:
|
116 |
+
wmodel, model_options = get_model()
|
117 |
+
|
118 |
+
segments, info = wmodel.transcribe(audio, batch_size=model_options.get("batch_size", None))
|
119 |
+
segments = list(segments) # Convert generator to list
|
120 |
+
|
121 |
+
transcription = ""
|
122 |
+
for segment in segments:
|
123 |
+
transcription += segment.text
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
return jsonify({'error': f'Transcription failed: {str(e)}'}), 500
|
127 |
+
finally:
|
128 |
+
# Clean up temporary files
|
129 |
+
os.remove(audio_file_path_final)
|
130 |
+
gc.collect()
|
131 |
+
torch.cuda.empty_cache()
|
132 |
+
|
133 |
+
return jsonify({'transcription': transcription, 'file_type': file_type}), 200
|
134 |
+
|
135 |
except Exception as e:
|
136 |
+
return jsonify({'error': str(e)}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
@app.route("/health", methods=["GET"])
|
139 |
def health_check():
|
140 |
+
return jsonify({"status": "healthy"}), 200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
@app.route("/status/busy", methods=["GET"])
|
143 |
+
def status_busy():
|
144 |
+
return jsonify({"busy": request_semaphore._value == 0}), 200
|
145 |
+
|
146 |
+
def get_model():
|
147 |
+
"""Load model"""
|
148 |
+
model_name = "guillaumekln/faster-whisper-small"
|
149 |
+
model_options = {"beam_size": 5}
|
150 |
+
wmodel = whisperx.load_model(model_name, device, compute_type=compute_type)
|
151 |
+
|
152 |
+
return wmodel, model_options
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
if __name__ == "__main__":
|
156 |
+
app.run(debug=True, port=int(os.environ.get("PORT", 7860)))
|
|
|
|
|
|
|
|