Spaces:
Paused
Paused
| # This file may have been modified by Flash-VStream Authors (Flash-VStream Modifications”). All Flash-VStream Modifications are Copyright 2024 Flash-VStream Authors. | |
| # Based on https://github.com/haotian-liu/LLaVA. | |
| import os | |
| import json | |
| import math | |
| import torch | |
| import random | |
| import argparse | |
| from tqdm import tqdm | |
| from torch.utils.data import Dataset, DataLoader | |
| from safetensors.torch import load_file | |
| from llama_vstream.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from llama_vstream.conversation import conv_templates, SeparatorStyle | |
| from llama_vstream.model.builder import load_pretrained_model | |
| from llama_vstream.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria | |
| def split_list(lst, n): | |
| """Split a list into n (roughly) equal-sized chunks""" | |
| chunk_size = math.ceil(len(lst) / n) # integer division | |
| return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
| def get_chunk(lst, n, k): | |
| chunks = split_list(lst, n) | |
| return chunks[k] | |
| def parse_args(): | |
| """ | |
| Parse command-line arguments. | |
| """ | |
| parser = argparse.ArgumentParser() | |
| # Define the command-line arguments | |
| parser.add_argument('--video_dir', help='Directory containing video files.', required=True) | |
| parser.add_argument('--gt_file', help='Path to the ground truth file containing question.', required=True) | |
| parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True) | |
| parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True) | |
| parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| parser.add_argument("--conv-mode", type=str, default=None) | |
| parser.add_argument("--num-chunks", type=int, default=1) | |
| parser.add_argument("--chunk-idx", type=int, default=0) | |
| parser.add_argument("--model-max-length", type=int, default=None) | |
| return parser.parse_args() | |
| class CustomDataset(Dataset): | |
| def __init__(self, questions, video_dir, tokenizer, image_processor, model_config): | |
| self.questions = questions | |
| self.video_dir = video_dir | |
| self.tokenizer = tokenizer | |
| self.image_processor = image_processor | |
| self.model_config = model_config | |
| def __getitem__(self, index): | |
| sample = self.questions[index] | |
| video_name = sample['video_id'] | |
| try: | |
| video_path = os.path.join(self.video_dir, video_name + '.safetensors') | |
| video_tensor = load_file(video_path)['feature'] | |
| except Exception as e: | |
| print(f'Dataset Exception: {e}, randomly choose one.') | |
| idx = random.randint(0, len(self.questions) - 1) | |
| return self.__getitem__(idx) | |
| qs = sample['question'] | |
| if self.model_config.mm_use_im_start_end: | |
| qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs | |
| else: | |
| qs = DEFAULT_IMAGE_TOKEN + '\n' + qs | |
| conv = conv_templates[args.conv_mode].copy() | |
| if 'system' in sample: | |
| conv.system = conv.system + ' ' + sample['system'] | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt') | |
| return input_ids, video_tensor | |
| def __len__(self): | |
| return len(self.questions) | |
| def create_data_loader(questions, video_dir, tokenizer, image_processor, model_config, batch_size=1, num_workers=2): | |
| assert batch_size == 1, "batch_size must be 1" | |
| dataset = CustomDataset(questions, video_dir, tokenizer, image_processor, model_config) | |
| data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False) | |
| return data_loader | |
| def run_inference(args): | |
| """ | |
| Run inference on ActivityNet QA DataSet using the Video-ChatGPT model. | |
| Args: | |
| args: Command-line arguments. | |
| """ | |
| # Initialize the model | |
| model_name = get_model_name_from_path(args.model_path) | |
| tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.model_max_length) | |
| # Load both ground truth file containing questions and answers | |
| with open(args.gt_file) as file: | |
| gt_questions = json.load(file) | |
| gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx) | |
| # Create the output directory if it doesn't exist | |
| if not os.path.exists(args.output_dir): | |
| try: | |
| os.makedirs(args.output_dir) | |
| except Exception as e: | |
| print(f'mkdir Except: {e}') | |
| video_formats = ['.mp4', '.avi', '.mov', '.mkv'] | |
| if args.num_chunks > 1: | |
| output_name = f"{args.num_chunks}_{args.chunk_idx}" | |
| else: | |
| output_name = args.output_name | |
| answers_file = os.path.join(args.output_dir, f"{output_name}.json") | |
| # resume from old exp | |
| exist_id_set = set() | |
| if os.path.exists(answers_file): | |
| with open(answers_file) as f: | |
| exist_pred_contents = [json.loads(line) for line in f] | |
| exist_id_set = set([x['id'] for x in exist_pred_contents]) | |
| new_gt_questions = [] | |
| for sample in tqdm(gt_questions): | |
| if not sample['id'] in exist_id_set: | |
| new_gt_questions.append(sample) | |
| gt_questions = new_gt_questions | |
| data_loader = create_data_loader(gt_questions, args.video_dir, tokenizer, image_processor, model.config) | |
| conv = conv_templates[args.conv_mode].copy() | |
| stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
| keywords = [stop_str] | |
| with open(answers_file, "a") as ans_file: | |
| for data, sample in tqdm(zip(data_loader, gt_questions), desc=f"cuda:{args.chunk_idx} ", total=len(gt_questions)): | |
| input_ids, video_tensors = data | |
| input_ids = input_ids.to(device='cuda', non_blocking=True) | |
| stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| features=video_tensors.to(dtype=torch.float16, device='cuda', non_blocking=True), | |
| do_sample=True, | |
| temperature=0.002, | |
| max_new_tokens=1024, | |
| use_cache=True, | |
| stopping_criteria=[stopping_criteria], | |
| ) | |
| input_token_len = input_ids.shape[1] | |
| n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
| if n_diff_input_output > 0: | |
| print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') | |
| outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] | |
| outputs = outputs.strip() | |
| if outputs.endswith(stop_str): | |
| outputs = outputs[:-len(stop_str)] | |
| outputs = outputs.strip() | |
| sample_set = { | |
| 'id': sample['id'], | |
| 'question': sample['question'], | |
| 'answer': sample['answer'], | |
| 'answer_type': sample['answer_type'] if 'answer_type' in sample else None, | |
| 'pred': outputs | |
| } | |
| ans_file.write(json.dumps(sample_set) + "\n") | |
| ans_file.flush() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| run_inference(args) | |