Spaces:
Running
on
Zero
Running
on
Zero
# @ hwang258@jh.edu | |
import argparse | |
import logging | |
import json | |
import glob | |
import os | |
import numpy as np | |
import tqdm | |
import time | |
import multiprocessing | |
from g2p_en import G2p | |
import nltk | |
nltk.download('averaged_perceptron_tagger_eng') | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Encode the gigaspeech phonemes using g2p model") | |
parser.add_argument('--save_dir', type=str, default=None, help="path to the manifest, phonemes, and encodec codes dirs") | |
parser.add_argument('--num_cpus', type=int, default=10) | |
return parser.parse_args() | |
if __name__ == "__main__": | |
formatter = ( | |
"%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s" | |
) | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
args = parse_args() | |
# get the path | |
phn_save_root = os.path.join(args.save_dir, "g2p") | |
os.makedirs(phn_save_root, exist_ok=True) | |
valid_symbols = [ | |
'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2', | |
'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2', | |
'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY', | |
'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1', | |
'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0', | |
'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW', | |
'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH', '<BLK>', ',', '.', '!', '?', | |
'<B_start>', '<B_end>', '<I_start>', '<I_end>' | |
] | |
### phonemization | |
text_tokenizer = G2p() | |
stime = time.time() | |
logging.info(f"phonemizing...") | |
json_paths = glob.glob(os.path.join(args.save_dir, 'jsons', '*.json')) | |
for json_path in json_paths: | |
with open(json_path, 'r') as json_file: | |
jsondata = json.load(json_file) | |
df_split = np.array_split(jsondata, args.num_cpus) | |
print(len(jsondata)) | |
# Optional: Save each part to a separate JSON file | |
cmds = [] | |
for idx, part in enumerate(df_split): | |
cmds.append((idx, part)) | |
def process_one(indx, splitdata): | |
for key in tqdm.tqdm(range(len(splitdata))): | |
save_fn = os.path.join(phn_save_root, splitdata[key]['segment_id']+".txt") | |
if not os.path.exists(save_fn): | |
text = splitdata[key]['text'] | |
phn = text_tokenizer(text) | |
phn = [item.replace(' ', '<BLK>') for item in phn] | |
phn = [item for item in phn if item in valid_symbols] | |
wrong_phn = [item for item in phn if item not in valid_symbols] | |
if len(wrong_phn) > 0: | |
print(wrong_phn) | |
phn_seq = " ".join(phn) | |
with open(save_fn, "w") as f: | |
f.write(phn_seq) | |
with multiprocessing.Pool(processes=args.num_cpus) as pool: | |
pool.starmap(process_one, cmds) |