File size: 11,998 Bytes
026c626
3fed2fb
 
 
c4d47f7
026c626
 
 
 
db6de8c
3fed2fb
db6de8c
026c626
 
 
 
 
db6de8c
026c626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6de8c
026c626
db6de8c
026c626
 
 
 
 
 
 
 
 
 
 
 
 
 
3fed2fb
026c626
3fed2fb
026c626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6de8c
026c626
db6de8c
026c626
 
db6de8c
 
 
 
026c626
db6de8c
 
026c626
db6de8c
 
 
 
 
 
 
 
 
 
026c626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d47f7
026c626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6de8c
026c626
 
 
 
 
 
 
 
 
db6de8c
026c626
db6de8c
 
 
c4d47f7
026c626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d47f7
026c626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6de8c
 
c4d47f7
026c626
 
 
 
c4d47f7
db6de8c
026c626
 
 
 
db6de8c
 
026c626
db6de8c
 
 
026c626
db6de8c
026c626
db6de8c
 
 
 
 
 
 
 
 
 
026c626
db6de8c
026c626
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# app.py
import gradio as gr
import wikipedia
import numpy as np
import tempfile
import os
import time
from datetime import datetime, timedelta
from gtts import gTTS
from langdetect import detect
from pydub import AudioSegment
from pydub.silence import split_on_silence
import speech_recognition as sr
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import re
import torch

# --- USER MANAGEMENT SYSTEM ---
class UserManager:
    def __init__(self):
        self.user_data = {}
        self.max_warnings = 1
        self.block_duration = timedelta(days=30)
    
    def get_user_status(self, user_id):
        if user_id not in self.user_data:
            return "active"
        if self.user_data[user_id].get('permanently_banned', False):
            return "banned"
        if 'blocked_until' in self.user_data[user_id]:
            if datetime.now() < self.user_data[user_id]['blocked_until']:
                return "blocked"
            del self.user_data[user_id]['blocked_until']
        return "active"
    
    def add_warning(self, user_id, violation_type):
        if user_id not in self.user_data:
            self.user_data[user_id] = {'warnings': 1, 'flags': [violation_type]}
        else:
            self.user_data[user_id]['warnings'] += 1
            self.user_data[user_id]['flags'].append(violation_type)
        
        if self.user_data[user_id]['warnings'] > self.max_warnings:
            self.user_data[user_id]['blocked_until'] = datetime.now() + self.block_duration
            return "blocked"
        return "warned"

user_manager = UserManager()

# --- MODEL INITIALIZATION ---
def load_models():
    models = {
        'translator': pipeline('translation', model='Helsinki-NLP/opus-mt-mul-en'),
        'answer_gen': pipeline('text2text-generation', model='google/flan-t5-base'),
        'encoder': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
        'toxic-bert': pipeline("text-classification", model="unitary/toxic-bert"),
        'roberta-hate': pipeline("text-classification", model="facebook/roberta-hate-speech-dynabench-r4-target")
    }
    
    for lang in ['fr', 'ar', 'zh', 'es']:
        models[f'en_to_{lang}'] = pipeline(f'translation_en_to_{lang}', model=f'Helsinki-NLP/opus-mt-en-{lang}')
    
    return models

models = load_models()

# --- UNIVERSAL HATE SPEECH DETECTION ---
class HateSpeechDetector:
    def __init__(self):
        self.keyword_banks = {
            'racial': ['nigger', 'chink', 'spic', 'kike', 'gook', 'wetback'],
            'gender': ['fag', 'dyke', 'tranny', 'whore', 'slut', 'bitch'],
            'violence': ['kill', 'murder', 'harm', 'hurt', 'abuse', 'torture'],
            'general': ['scum', 'vermin', 'subhuman', 'untermensch']
        }
        
        self.patterns = [
            (r'\b(all|every)\s\w+\s(should|must)\s(die|burn)', 'group violence'),
            (r'\b(how to|ways? to)\s(kill|harm|hurt)', 'harm instructions'),
            (r'[!@#$%^&*]igg[!@#$%^&*]', 'coded racial slur')
        ]
    
    def detect(self, text):
        text_lower = text.lower()
        violations = []
        
        # Keyword detection
        for category, keywords in self.keyword_banks.items():
            found = [kw for kw in keywords if kw in text_lower]
            if found:
                violations.append(f"{category} terms: {', '.join(found[:3])}")
        
        # Pattern detection
        for pattern, desc in self.patterns:
            if re.search(pattern, text_lower):
                violations.append(f"pattern: {desc}")
        
        # Model detection
        try:
            toxic_result = models['toxic-bert'](text)[0]
            if toxic_result['label'].lower() in ['toxic', 'hate'] and toxic_result['score'] > 0.7:
                violations.append(f"toxic-bert: {toxic_result['label']} ({toxic_result['score']:.2f})")
            
            hate_result = models['roberta-hate'](text)[0]
            if hate_result['label'].lower() in ['hate', 'offensive'] and hate_result['score'] > 0.7:
                violations.append(f"roberta-hate: {hate_result['label']} ({hate_result['score']:.2f})")
        except Exception as e:
            print(f"Model error: {e}")
        
        return violations if violations else None

hate_detector = HateSpeechDetector()

# --- RESPONSE GENERATION ---
def generate_response(text, topic, lang):
    try:
        wikipedia.set_lang('en')
        try:
            page = wikipedia.page(topic, auto_suggest=False)
            context = page.summary[:1000]
        except wikipedia.exceptions.DisambiguationError as e:
            page = wikipedia.page(e.options[0])
            context = page.summary[:1000]
    except Exception as e:
        print(f"Wikipedia error: {e}")
        return "Could not find information. Please try another topic.", None

    prompt = f"Context: {context}\nQuestion: {text}\nAnswer:"
    answer = models['answer_gen'](prompt, max_length=200)[0]['generated_text']
    translated = translate(answer, 'en', lang) if lang != 'en' else answer
    audio_path = text_to_speech(translated, lang)
    return translated, audio_path

# --- WARNING MESSAGES ---
def create_warning_message(violations):
    return gr.HTML(f"""
    <div style='
        border: 2px solid #ff0000;
        border-radius: 5px;
        padding: 10px;
        background-color: #fff0f0;
        margin: 10px 0;
    '>
        <div style='color: #ff0000; font-weight: bold;'>
            ⚠️ WARNING: Violation Detected
        </div>
        <div style='margin-top: 8px;'>
            Your message contains prohibited content
        </div>
        <div style='margin-top: 8px; font-size: 0.9em;'>
            <b>Reason:</b> {', '.join(violations[:2])}
        </div>
    </div>
    """)

def create_blocked_message():
    return gr.HTML("""
    <div style='
        border: 2px solid #990000;
        border-radius: 5px;
        padding: 10px;
        background-color: #ffebee;
    '>
        β›” ACCOUNT TEMPORARILY SUSPENDED
    </div>
    """)

# --- MAIN HANDLER ---
def handle_interaction(audio, text, topic, lang, chat_history, request: gr.Request):
    user_id = request.client.host if request else "default_user"
    status = user_manager.get_user_status(user_id)
    
    if status == "banned":
        return chat_history.append(("", "β›” Account permanently banned")), "", None
    if status == "blocked":
        return chat_history.append(("", create_blocked_message())), "", None
    
    if audio:
        text = process_audio(audio) or text
    
    if not text.strip():
        return chat_history.append(("", "✏️ Please enter a question")), "", None
    
    violations = hate_detector.detect(text)
    if violations:
        action = user_manager.add_warning(user_id, violations[0])
        if action == "warned":
            chat_history.append((text, create_warning_message(violations)))
        elif action == "blocked":
            chat_history.append(("", create_blocked_message()))
        return chat_history, "", None
    
    response, audio_output = generate_response(text, topic, lang)
    chat_history.append((text, response))
    return chat_history, "", audio_output

# --- AUDIO PROCESSING ---
def process_audio(audio_path):
    recognizer = sr.Recognizer()
    sound = AudioSegment.from_file(audio_path)
    chunks = split_on_silence(sound, min_silence_len=500, silence_thresh=sound.dBFS-14)
    
    full_text = ""
    for chunk in chunks:
        with tempfile.NamedTemporaryFile(suffix='.wav') as f:
            chunk.export(f.name, format="wav")
            with sr.AudioFile(f.name) as source:
                audio = recognizer.record(source)
                try: full_text += recognizer.recognize_google(audio) + " "
                except: continue
    return full_text.strip()

def text_to_speech(text, lang):
    try:
        tts = gTTS(text=text, lang=lang)
        with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
            tts.save(f.name)
            return f.name
    except Exception as e:
        print(f"TTS Error: {e}")
        return None

def translate(text, src, tgt):
    if src == tgt: return text
    if src != 'en': text = models['translator'](text)[0]['translation_text']
    if f'en_to_{tgt}' in models: return models[f'en_to_{tgt}'](text)[0]['translation_text']
    return text

# --- INTERACTIVE DESCRIPTION ---
description_html = """
<div style="font-family: 'Arial', sans-serif; max-width: 800px; margin: 0 auto;">
    <div style="text-align: center; margin-bottom: 30px;">
        <img src="https://i.imgur.com/6wBs5mO.png" style="width: 120px; height: 120px; border-radius: 50%; border: 3px solid #00008b;">
        <h1 style="color: #00008b; margin-top: 15px;">🌍 Multilingual AI Assistant</h1>
        <p style="color: #555;">Powered by Transformers and Gradio</p>
    </div>

    <div style="background-color: #e6f2ff; padding: 25px; border-radius: 10px; border: 2px solid #00008b; margin-bottom: 20px;">
        <h2 style="color: #00008b; margin-top: 0;">✨ Features</h2>
        <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px;">
            <div style="background: white; padding: 15px; border-radius: 8px;">
                <h3 style="margin-top: 0;">πŸ” Wikipedia Knowledge</h3>
                <p>Answers questions using Wikipedia content</p>
            </div>
            <div style="background: white; padding: 15px; border-radius: 8px;">
                <h3 style="margin-top: 0;">πŸ—£οΈ Voice Interaction</h3>
                <p>Speak or type your questions</p>
            </div>
            <div style="background: white; padding: 15px; border-radius: 8px;">
                <h3 style="margin-top: 0;">🌐 5 Languages</h3>
                <p>English, French, Spanish, Chinese, Arabic</p>
            </div>
            <div style="background: white; padding: 15px; border-radius: 8px;">
                <h3 style="margin-top: 0;">πŸ›‘οΈ Content Moderation</h3>
                <p>Automated hate speech detection</p>
            </div>
        </div>
    </div>

    <div style="background-color: #fff0f0; padding: 25px; border-radius: 10px; border: 2px solid #ff0000; margin-bottom: 20px;">
        <h2 style="color: #ff0000; margin-top: 0;">🚫 Restricted Content</h2>
        <ul>
            <li>Hate speech or discrimination</li>
            <li>Violent or harmful content</li>
            <li>Personal/medical/legal advice</li>
        </ul>
    </div>
</div>
"""

# --- GRADIO INTERFACE ---
with gr.Blocks(title="🌍 Multilingual AI Assistant") as demo:
    gr.HTML(description_html)
    
    with gr.Row():
        with gr.Column(scale=1):
            audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="🎀 Speak or upload audio")
            topic_input = gr.Textbox("Artificial Intelligence", label="πŸ“š Wikipedia Topic")
            lang_input = gr.Dropdown(["en", "fr", "es", "zh", "ar"], value="en", label="🌐 Output Language")
        
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(label="Conversation")
            text_input = gr.Textbox(placeholder="Type your question...", label="✏️ Or type here")
            with gr.Row():
                clear_btn = gr.Button("πŸ—‘οΈ Clear Chat")
                submit_btn = gr.Button("πŸš€ Submit", variant="primary")
    
    audio_output = gr.Audio(label="πŸ”Š Answer", visible=True)
    
    submit_btn.click(
        handle_interaction,
        inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
        outputs=[chatbot, text_input, audio_output]
    )
    text_input.submit(
        handle_interaction,
        inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
        outputs=[chatbot, text_input, audio_output]
    )
    clear_btn.click(lambda: ([], "", None), outputs=[chatbot, text_input, audio_output])

if __name__ == "__main__":
    demo.launch(share=True)