Spaces:
Sleeping
Sleeping
File size: 11,998 Bytes
026c626 3fed2fb c4d47f7 026c626 db6de8c 3fed2fb db6de8c 026c626 db6de8c 026c626 db6de8c 026c626 db6de8c 026c626 3fed2fb 026c626 3fed2fb 026c626 db6de8c 026c626 db6de8c 026c626 db6de8c 026c626 db6de8c 026c626 db6de8c 026c626 c4d47f7 026c626 db6de8c 026c626 db6de8c 026c626 db6de8c c4d47f7 026c626 c4d47f7 026c626 db6de8c c4d47f7 026c626 c4d47f7 db6de8c 026c626 db6de8c 026c626 db6de8c 026c626 db6de8c 026c626 db6de8c 026c626 db6de8c 026c626 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# app.py
import gradio as gr
import wikipedia
import numpy as np
import tempfile
import os
import time
from datetime import datetime, timedelta
from gtts import gTTS
from langdetect import detect
from pydub import AudioSegment
from pydub.silence import split_on_silence
import speech_recognition as sr
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import re
import torch
# --- USER MANAGEMENT SYSTEM ---
class UserManager:
def __init__(self):
self.user_data = {}
self.max_warnings = 1
self.block_duration = timedelta(days=30)
def get_user_status(self, user_id):
if user_id not in self.user_data:
return "active"
if self.user_data[user_id].get('permanently_banned', False):
return "banned"
if 'blocked_until' in self.user_data[user_id]:
if datetime.now() < self.user_data[user_id]['blocked_until']:
return "blocked"
del self.user_data[user_id]['blocked_until']
return "active"
def add_warning(self, user_id, violation_type):
if user_id not in self.user_data:
self.user_data[user_id] = {'warnings': 1, 'flags': [violation_type]}
else:
self.user_data[user_id]['warnings'] += 1
self.user_data[user_id]['flags'].append(violation_type)
if self.user_data[user_id]['warnings'] > self.max_warnings:
self.user_data[user_id]['blocked_until'] = datetime.now() + self.block_duration
return "blocked"
return "warned"
user_manager = UserManager()
# --- MODEL INITIALIZATION ---
def load_models():
models = {
'translator': pipeline('translation', model='Helsinki-NLP/opus-mt-mul-en'),
'answer_gen': pipeline('text2text-generation', model='google/flan-t5-base'),
'encoder': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
'toxic-bert': pipeline("text-classification", model="unitary/toxic-bert"),
'roberta-hate': pipeline("text-classification", model="facebook/roberta-hate-speech-dynabench-r4-target")
}
for lang in ['fr', 'ar', 'zh', 'es']:
models[f'en_to_{lang}'] = pipeline(f'translation_en_to_{lang}', model=f'Helsinki-NLP/opus-mt-en-{lang}')
return models
models = load_models()
# --- UNIVERSAL HATE SPEECH DETECTION ---
class HateSpeechDetector:
def __init__(self):
self.keyword_banks = {
'racial': ['nigger', 'chink', 'spic', 'kike', 'gook', 'wetback'],
'gender': ['fag', 'dyke', 'tranny', 'whore', 'slut', 'bitch'],
'violence': ['kill', 'murder', 'harm', 'hurt', 'abuse', 'torture'],
'general': ['scum', 'vermin', 'subhuman', 'untermensch']
}
self.patterns = [
(r'\b(all|every)\s\w+\s(should|must)\s(die|burn)', 'group violence'),
(r'\b(how to|ways? to)\s(kill|harm|hurt)', 'harm instructions'),
(r'[!@#$%^&*]igg[!@#$%^&*]', 'coded racial slur')
]
def detect(self, text):
text_lower = text.lower()
violations = []
# Keyword detection
for category, keywords in self.keyword_banks.items():
found = [kw for kw in keywords if kw in text_lower]
if found:
violations.append(f"{category} terms: {', '.join(found[:3])}")
# Pattern detection
for pattern, desc in self.patterns:
if re.search(pattern, text_lower):
violations.append(f"pattern: {desc}")
# Model detection
try:
toxic_result = models['toxic-bert'](text)[0]
if toxic_result['label'].lower() in ['toxic', 'hate'] and toxic_result['score'] > 0.7:
violations.append(f"toxic-bert: {toxic_result['label']} ({toxic_result['score']:.2f})")
hate_result = models['roberta-hate'](text)[0]
if hate_result['label'].lower() in ['hate', 'offensive'] and hate_result['score'] > 0.7:
violations.append(f"roberta-hate: {hate_result['label']} ({hate_result['score']:.2f})")
except Exception as e:
print(f"Model error: {e}")
return violations if violations else None
hate_detector = HateSpeechDetector()
# --- RESPONSE GENERATION ---
def generate_response(text, topic, lang):
try:
wikipedia.set_lang('en')
try:
page = wikipedia.page(topic, auto_suggest=False)
context = page.summary[:1000]
except wikipedia.exceptions.DisambiguationError as e:
page = wikipedia.page(e.options[0])
context = page.summary[:1000]
except Exception as e:
print(f"Wikipedia error: {e}")
return "Could not find information. Please try another topic.", None
prompt = f"Context: {context}\nQuestion: {text}\nAnswer:"
answer = models['answer_gen'](prompt, max_length=200)[0]['generated_text']
translated = translate(answer, 'en', lang) if lang != 'en' else answer
audio_path = text_to_speech(translated, lang)
return translated, audio_path
# --- WARNING MESSAGES ---
def create_warning_message(violations):
return gr.HTML(f"""
<div style='
border: 2px solid #ff0000;
border-radius: 5px;
padding: 10px;
background-color: #fff0f0;
margin: 10px 0;
'>
<div style='color: #ff0000; font-weight: bold;'>
β οΈ WARNING: Violation Detected
</div>
<div style='margin-top: 8px;'>
Your message contains prohibited content
</div>
<div style='margin-top: 8px; font-size: 0.9em;'>
<b>Reason:</b> {', '.join(violations[:2])}
</div>
</div>
""")
def create_blocked_message():
return gr.HTML("""
<div style='
border: 2px solid #990000;
border-radius: 5px;
padding: 10px;
background-color: #ffebee;
'>
β ACCOUNT TEMPORARILY SUSPENDED
</div>
""")
# --- MAIN HANDLER ---
def handle_interaction(audio, text, topic, lang, chat_history, request: gr.Request):
user_id = request.client.host if request else "default_user"
status = user_manager.get_user_status(user_id)
if status == "banned":
return chat_history.append(("", "β Account permanently banned")), "", None
if status == "blocked":
return chat_history.append(("", create_blocked_message())), "", None
if audio:
text = process_audio(audio) or text
if not text.strip():
return chat_history.append(("", "βοΈ Please enter a question")), "", None
violations = hate_detector.detect(text)
if violations:
action = user_manager.add_warning(user_id, violations[0])
if action == "warned":
chat_history.append((text, create_warning_message(violations)))
elif action == "blocked":
chat_history.append(("", create_blocked_message()))
return chat_history, "", None
response, audio_output = generate_response(text, topic, lang)
chat_history.append((text, response))
return chat_history, "", audio_output
# --- AUDIO PROCESSING ---
def process_audio(audio_path):
recognizer = sr.Recognizer()
sound = AudioSegment.from_file(audio_path)
chunks = split_on_silence(sound, min_silence_len=500, silence_thresh=sound.dBFS-14)
full_text = ""
for chunk in chunks:
with tempfile.NamedTemporaryFile(suffix='.wav') as f:
chunk.export(f.name, format="wav")
with sr.AudioFile(f.name) as source:
audio = recognizer.record(source)
try: full_text += recognizer.recognize_google(audio) + " "
except: continue
return full_text.strip()
def text_to_speech(text, lang):
try:
tts = gTTS(text=text, lang=lang)
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
tts.save(f.name)
return f.name
except Exception as e:
print(f"TTS Error: {e}")
return None
def translate(text, src, tgt):
if src == tgt: return text
if src != 'en': text = models['translator'](text)[0]['translation_text']
if f'en_to_{tgt}' in models: return models[f'en_to_{tgt}'](text)[0]['translation_text']
return text
# --- INTERACTIVE DESCRIPTION ---
description_html = """
<div style="font-family: 'Arial', sans-serif; max-width: 800px; margin: 0 auto;">
<div style="text-align: center; margin-bottom: 30px;">
<img src="https://i.imgur.com/6wBs5mO.png" style="width: 120px; height: 120px; border-radius: 50%; border: 3px solid #00008b;">
<h1 style="color: #00008b; margin-top: 15px;">π Multilingual AI Assistant</h1>
<p style="color: #555;">Powered by Transformers and Gradio</p>
</div>
<div style="background-color: #e6f2ff; padding: 25px; border-radius: 10px; border: 2px solid #00008b; margin-bottom: 20px;">
<h2 style="color: #00008b; margin-top: 0;">β¨ Features</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px;">
<div style="background: white; padding: 15px; border-radius: 8px;">
<h3 style="margin-top: 0;">π Wikipedia Knowledge</h3>
<p>Answers questions using Wikipedia content</p>
</div>
<div style="background: white; padding: 15px; border-radius: 8px;">
<h3 style="margin-top: 0;">π£οΈ Voice Interaction</h3>
<p>Speak or type your questions</p>
</div>
<div style="background: white; padding: 15px; border-radius: 8px;">
<h3 style="margin-top: 0;">π 5 Languages</h3>
<p>English, French, Spanish, Chinese, Arabic</p>
</div>
<div style="background: white; padding: 15px; border-radius: 8px;">
<h3 style="margin-top: 0;">π‘οΈ Content Moderation</h3>
<p>Automated hate speech detection</p>
</div>
</div>
</div>
<div style="background-color: #fff0f0; padding: 25px; border-radius: 10px; border: 2px solid #ff0000; margin-bottom: 20px;">
<h2 style="color: #ff0000; margin-top: 0;">π« Restricted Content</h2>
<ul>
<li>Hate speech or discrimination</li>
<li>Violent or harmful content</li>
<li>Personal/medical/legal advice</li>
</ul>
</div>
</div>
"""
# --- GRADIO INTERFACE ---
with gr.Blocks(title="π Multilingual AI Assistant") as demo:
gr.HTML(description_html)
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="π€ Speak or upload audio")
topic_input = gr.Textbox("Artificial Intelligence", label="π Wikipedia Topic")
lang_input = gr.Dropdown(["en", "fr", "es", "zh", "ar"], value="en", label="π Output Language")
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
text_input = gr.Textbox(placeholder="Type your question...", label="βοΈ Or type here")
with gr.Row():
clear_btn = gr.Button("ποΈ Clear Chat")
submit_btn = gr.Button("π Submit", variant="primary")
audio_output = gr.Audio(label="π Answer", visible=True)
submit_btn.click(
handle_interaction,
inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
outputs=[chatbot, text_input, audio_output]
)
text_input.submit(
handle_interaction,
inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
outputs=[chatbot, text_input, audio_output]
)
clear_btn.click(lambda: ([], "", None), outputs=[chatbot, text_input, audio_output])
if __name__ == "__main__":
demo.launch(share=True) |