Spaces:
Runtime error
Runtime error
File size: 4,068 Bytes
2071150 3aac243 2071150 3aac243 2071150 3aac243 2071150 3aac243 2071150 3aac243 2071150 5664eba 2071150 3aac243 2071150 3aac243 2071150 3aac243 2071150 3aac243 9fe3fa1 2071150 3aac243 5664eba 3aac243 5664eba 3aac243 5664eba 3aac243 4569f2f 3aac243 4569f2f 3aac243 9fe3fa1 3aac243 88f50b0 3aac243 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
#!/usr/bin/env python
import functools
import os
import pathlib
import cv2
import dlib
import gradio as gr
import huggingface_hub
import numpy as np
import pretrainedmodels
import torch
import torch.nn as nn
import torch.nn.functional as F
DESCRIPTION = "# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)"
def get_model(model_name="se_resnext50_32x4d", num_classes=101, pretrained="imagenet"):
model = pretrainedmodels.__dict__[model_name](pretrained=pretrained)
dim_feats = model.last_linear.in_features
model.last_linear = nn.Linear(dim_feats, num_classes)
model.avg_pool = nn.AdaptiveAvgPool2d(1)
return model
def load_model(device):
model = get_model(model_name="se_resnext50_32x4d", pretrained=None)
path = huggingface_hub.hf_hub_download("public-data/yu4u-age-estimation-pytorch", "pretrained.pth")
model.load_state_dict(torch.load(path))
model = model.to(device)
model.eval()
return model
def load_image(path):
image = cv2.imread(path)
h_orig, w_orig = image.shape[:2]
size = max(h_orig, w_orig)
scale = 640 / size
w, h = int(w_orig * scale), int(h_orig * scale)
image = cv2.resize(image, (w, h))
return image
def draw_label(image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX, font_scale=0.8, thickness=1):
size = cv2.getTextSize(label, font, font_scale, thickness)[0]
x, y = point
cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED)
cv2.putText(image, label, point, font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
@torch.inference_mode()
def predict(image, model, face_detector, device, margin=0.4, input_size=224):
image = cv2.imread(image, cv2.IMREAD_COLOR)[:, :, ::-1].copy()
image_h, image_w = image.shape[:2]
# detect faces using dlib detector
detected = face_detector(image, 1)
faces = np.empty((len(detected), input_size, input_size, 3))
if len(detected) > 0:
for i, d in enumerate(detected):
x1, y1, x2, y2, w, h = d.left(), d.top(), d.right() + 1, d.bottom() + 1, d.width(), d.height()
xw1 = max(int(x1 - margin * w), 0)
yw1 = max(int(y1 - margin * h), 0)
xw2 = min(int(x2 + margin * w), image_w - 1)
yw2 = min(int(y2 + margin * h), image_h - 1)
faces[i] = cv2.resize(image[yw1 : yw2 + 1, xw1 : xw2 + 1], (input_size, input_size))
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 255), 2)
cv2.rectangle(image, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2)
# predict ages
inputs = torch.from_numpy(np.transpose(faces.astype(np.float32), (0, 3, 1, 2))).to(device)
outputs = F.softmax(model(inputs), dim=-1).cpu().numpy()
ages = np.arange(0, 101)
predicted_ages = (outputs * ages).sum(axis=-1)
# draw results
for age, d in zip(predicted_ages, detected):
draw_label(image, (d.left(), d.top()), f"{int(age)}")
return image, str(predicted_ages)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
face_detector = dlib.get_frontal_face_detector()
fn = functools.partial(predict, model=model, face_detector=face_detector, device=device)
image_dir = pathlib.Path("sample_images")
examples = [path.as_posix() for path in sorted(image_dir.glob("*.jpg"))]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input", type="filepath")
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Result")
digits = gr.Textbox()
gr.Examples(
examples=examples,
inputs=image,
outputs=result,
fn=fn,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=fn,
inputs=image,
outputs=[result,digits],
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=15).launch()
|