File size: 1,751 Bytes
cafc1fb
 
 
 
 
 
466c0e2
cafc1fb
 
2653f1b
cafc1fb
 
2653f1b
 
bbc5870
15a416e
cafc1fb
7cfd810
15a416e
2653f1b
 
bbc5870
2b69f90
0168b93
2653f1b
 
4063645
170f0c5
 
 
 
 
 
2653f1b
466c0e2
170f0c5
2653f1b
170f0c5
 
4063645
2653f1b
 
bbc5870
2653f1b
cafc1fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"""
This is a Gradio MCP client that connects to my MCP server (mcp-rag-workflow).
This script initializes a Gradio interface for an agent that uses tools from the MCP server.
It connects to the MCP server, retrieves available tools, and sets up a chat interface where users can interact with the agent.
"""

import os
from dotenv import load_dotenv
load_dotenv()  # Load environment variables from .env file

import gradio as gr
from smolagents import InferenceClientModel, CodeAgent, MCPClient

try:
    mcp_client = MCPClient(
        {
            "url": "https://agents-mcp-hackathon-mcp-rag-workflow.hf.space/gradio_api/mcp/sse",
            "transport": "sse"
        }
    )

    tools = mcp_client.get_tools()

    model = InferenceClientModel(token=os.getenv("HUGGINGFACE_API_TOKEN"))
    agent = CodeAgent(tools=[*tools], model=model)

    mcp_description = """
        **Example Queries**:
          - "What are the main features of fuel system of SU-35?"
          - "What is the combat potential of SU-35?"
          - "Write me a report on origin of the universe."
          - "Write me a report on the impact of climate change on polar bears."
         """
    demo = gr.ChatInterface(
        fn=lambda message, history: str(agent.run(message)),
        chatbot=gr.Chatbot(height=450, placeholder="Ask me about Sukhoi SU-35 or ask to write report on any topic."),
        type="messages",
        title="A Gradio MCP client that uses Tools from my Hackathon MCP server",
        examples=[ "What are the main features of fuel system of SU-35?", "What is the combat potential of SU-35?", "Write me a report on origin of the universe."],
        description=mcp_description,
    )

    demo.launch()
finally:
    mcp_client.disconnect()