File size: 19,625 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import io
import zlib
import base64
import pickle
import inspect
import requests
import numpy as np
import torch
from typing import Union, List, Dict
from enum import Enum
from PIL import Image, ImageOps, ImageChops, ImageEnhance, ImageFilter, PngImagePlugin
from numpy import ndarray
from torch import Tensor

from modules import sd_samplers, scripts, shared, sd_vae, images, txt2img, img2img
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.sd_models import CheckpointInfo, get_closet_checkpoint_match
from modules.api.models import (
    StableDiffusionTxt2ImgProcessingAPI,
    StableDiffusionImg2ImgProcessingAPI,
)

from .helpers import log, get_dict_attribute

img2img_image_args_by_mode: Dict[int, List[List[str]]] = {
    0: [["init_img"]],
    1: [["sketch"]],
    2: [["init_img_with_mask", "image"], ["init_img_with_mask", "mask"]],
    3: [["inpaint_color_sketch"], ["inpaint_color_sketch_orig"]],
    4: [["init_img_inpaint"], ["init_mask_inpaint"]],
}


def get_script_by_name(script_name: str, is_img2img: bool = False, is_always_on: bool = False) -> scripts.Script:
    script_runner = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img
    available_scripts = script_runner.alwayson_scripts if is_always_on else script_runner.selectable_scripts

    return next(
        (s for s in available_scripts if s.title().lower() == script_name.lower()),
        None,
    )


def load_image_from_url(url: str):
    try:
        response = requests.get(url)
        buffer = io.BytesIO(response.content)
        return Image.open(buffer)
    except Exception as e:
        log.error(f"[AgentScheduler] Error downloading image from url: {e}")
        return None


def encode_image_to_base64(image):
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image.astype("uint8"))
    elif isinstance(image, str):
        if image.startswith("http://") or image.startswith("https://"):
            image = load_image_from_url(image)

    if not isinstance(image, Image.Image):
        return image

    geninfo, _ = images.read_info_from_image(image)
    pnginfo = PngImagePlugin.PngInfo()
    if geninfo:
        pnginfo.add_text("parameters", geninfo)

    with io.BytesIO() as output_bytes:
        if geninfo:
            image.save(output_bytes, format="PNG", pnginfo=pnginfo)
        else:
            image.save(output_bytes, format="PNG") # remove pnginfo to save space
        bytes_data = output_bytes.getvalue()
        return "data:image/png;base64," + base64.b64encode(bytes_data).decode("utf-8")


def serialize_image(image):
    if isinstance(image, np.ndarray):
        shape = image.shape
        dtype = image.dtype
        data = base64.b64encode(zlib.compress(image.tobytes())).decode()
        return {"shape": shape, "data": data, "cls": "ndarray", "dtype": str(dtype)}
    elif isinstance(image, torch.Tensor):
        shape = image.shape
        dtype = image.dtype
        data = base64.b64encode(zlib.compress(image.detach().numpy().tobytes())).decode()
        return {
            "shape": shape,
            "data": data,
            "cls": "Tensor",
            "device": image.device.type,
            "dtype": str(dtype),
        }
    elif isinstance(image, Image.Image):
        size = image.size
        mode = image.mode
        data = base64.b64encode(zlib.compress(image.tobytes())).decode()
        return {
            "size": size,
            "mode": mode,
            "data": data,
            "cls": "Image",
        }
    else:
        return image


def deserialize_image(image_str):
    if isinstance(image_str, dict) and image_str.get("cls", None):
        cls = image_str["cls"]
        data = zlib.decompress(base64.b64decode(image_str["data"]))

        if cls == "ndarray":
            # warn if required fields are missing
            if image_str.get("dtype", None) is None:
                log.warning(f"Missing dtype for ndarray")
            shape = tuple(image_str["shape"])
            dtype = np.dtype(image_str.get("dtype", "uint8"))
            image = np.frombuffer(data, dtype=dtype)
            return image.reshape(shape)
        elif cls == "Tensor":
            if image_str.get("device", None) is None:
                log.warning(f"Missing device for Tensor")
            shape = tuple(image_str["shape"])
            dtype = np.dtype(image_str.get("dtype", "uint8"))
            image_np = np.frombuffer(data, dtype=dtype)
            return torch.from_numpy(image_np.reshape(shape)).to(device=image_str.get("device", "cpu"))
        else:
            size = tuple(image_str["size"])
            mode = image_str["mode"]
            return Image.frombytes(mode, size, data)
    else:
        return image_str


def serialize_img2img_image_args(args: Dict):
    for mode, image_args in img2img_image_args_by_mode.items():
        for keys in image_args:
            if mode != args["mode"]:
                # set None to unused image args to save space
                args[keys[0]] = None
            elif len(keys) == 1:
                image = args.get(keys[0], None)
                args[keys[0]] = serialize_image(image)
            else:
                value = args.get(keys[0], {})
                image = value.get(keys[1], None)
                value[keys[1]] = serialize_image(image)
                args[keys[0]] = value


def deserialize_img2img_image_args(args: Dict):
    for mode, image_args in img2img_image_args_by_mode.items():
        if mode != args["mode"]:
            continue

        for keys in image_args:
            if len(keys) == 1:
                image = args.get(keys[0], None)
                args[keys[0]] = deserialize_image(image)
            else:
                value = args.get(keys[0], {})
                image = value.get(keys[1], None)
                value[keys[1]] = deserialize_image(image)
                args[keys[0]] = value


def serialize_controlnet_args(cnet_unit):
    args: Dict = cnet_unit.__dict__
    serialized_args = {"is_cnet": True}
    for k, v in args.items():
        if isinstance(v, Enum):
            serialized_args[k] = v.value
        else:
            serialized_args[k] = v

    return serialized_args


def deserialize_controlnet_args(args: Dict):
    new_args = args.copy()
    new_args.pop("is_cnet", None)
    new_args.pop("is_ui", None)

    return new_args


def serialize_script_args(script_args: List):
    # convert UiControlNetUnit to dict to make it serializable
    for i, a in enumerate(script_args):
        if type(a).__name__ == "UiControlNetUnit":
            script_args[i] = serialize_controlnet_args(a)

    return zlib.compress(pickle.dumps(script_args))


def deserialize_script_args(script_args: Union[bytes, List], UiControlNetUnit = None):
    if type(script_args) is bytes:
        script_args = pickle.loads(zlib.decompress(script_args))

    for i, a in enumerate(script_args):
        if isinstance(a, dict) and a.get("is_cnet", False):
            unit = deserialize_controlnet_args(a)
            skip_controlnet = False
            if UiControlNetUnit is not None:
                u = UiControlNetUnit()
                for k, v in unit.items():
                    if isinstance(getattr(u, k, None), Enum):
                        # check if v is a valid enum value
                        enum_obj: Enum= getattr(u, k)
                        if v not in [e.value for e in enum_obj.__class__]:
                            log.error(f"Invalid enum value {v} for {k} encountered, valid value is {enum_obj.__class__}")
                            skip_controlnet = True
                            break
                        unit[k] = type(getattr(u, k))(v)
                if not skip_controlnet: # valid 
                    unit = UiControlNetUnit(**unit)
            if not skip_controlnet: # valid
                script_args[i] = unit

    return script_args


def map_controlnet_args_to_api_task_args(args: Dict):
    if type(args).__name__ == "UiControlNetUnit":
        args = args.__dict__

    for k, v in args.items():
        if k == "image" and v is not None:
            args[k] = {
                "image": encode_image_to_base64(v["image"]),
                "mask": encode_image_to_base64(v["mask"]) if v.get("mask", None) is not None else None,
            }
        if isinstance(v, Enum):
            args[k] = v.value

    return args


def map_ui_task_args_list_to_named_args(args: List, is_img2img: bool):
    fn = (
        getattr(img2img, "img2img_create_processing", img2img.img2img)
        if is_img2img
        else getattr(txt2img, "txt2img_create_processing", txt2img.txt2img)
    )
    arg_names = inspect.getfullargspec(fn).args

    # SD WebUI 1.5.0 has new request arg
    if "request" in arg_names:
        args.insert(arg_names.index("request"), None)

    named_args = dict(zip(arg_names, args[0 : len(arg_names)]))
    script_args = args[len(arg_names) :]

    override_settings_texts: List[str] = named_args.get("override_settings_texts", [])
    # add clip_skip if not exist in args (vlad fork has this arg)
    if named_args.get("clip_skip", None) is None:
        clip_skip = next((s for s in override_settings_texts if s.startswith("Clip skip:")), None)
        if clip_skip is None and hasattr(shared.opts, "CLIP_stop_at_last_layers"):
            override_settings_texts.append(f"Clip skip: {shared.opts.CLIP_stop_at_last_layers}")

    named_args["override_settings_texts"] = override_settings_texts

    sampler_index = named_args.get("sampler_index", None)
    if sampler_index is not None:
        available_samplers = sd_samplers.samplers_for_img2img if is_img2img else sd_samplers.samplers
        sampler_name = available_samplers[named_args["sampler_index"]].name
        named_args["sampler_name"] = sampler_name
        log.debug(f"serialize sampler index: {str(sampler_index)} as {sampler_name}")

    return (
        named_args,
        script_args,
    )


def map_named_args_to_ui_task_args_list(named_args: Dict, script_args: List, is_img2img: bool):
    fn = (
        getattr(img2img, "img2img_create_processing", img2img.img2img)
        if is_img2img
        else getattr(txt2img, "txt2img_create_processing", txt2img.txt2img)
    )
    arg_names = inspect.getfullargspec(fn).args

    sampler_name = named_args.get("sampler_name", None)
    if sampler_name is not None:
        available_samplers = sd_samplers.samplers_for_img2img if is_img2img else sd_samplers.samplers
        sampler_index = next((i for i, x in enumerate(available_samplers) if x.name == sampler_name), 0)
        named_args["sampler_index"] = sampler_index

    args = [named_args.get(name, None) for name in arg_names]
    args.extend(script_args)

    return args


def map_script_args_list_to_named(script: scripts.Script, args: List):
    script_name = script.title().lower()

    if script_name == "controlnet":
        for i, cnet_args in enumerate(args):
            args[i] = map_controlnet_args_to_api_task_args(cnet_args)

        return args

    fn = script.process if script.alwayson else script.run
    inspection = inspect.getfullargspec(fn)
    arg_names = inspection.args[2:]
    named_script_args = dict(zip(arg_names, args[: len(arg_names)]))
    if inspection.varargs is not None:
        named_script_args[inspection.varargs] = args[len(arg_names) :]

    return named_script_args


def map_named_script_args_to_list(script: scripts.Script, named_args: Union[dict, list]):
    script_name = script.title().lower()

    if isinstance(named_args, dict):
        fn = script.process if script.alwayson else script.run
        inspection = inspect.getfullargspec(fn)
        arg_names = inspection.args[2:]
        args = [named_args.get(name, None) for name in arg_names]
        if inspection.varargs is not None:
            args.extend(named_args.get(inspection.varargs, []))

        return args

    if isinstance(named_args, list):
        if script_name == "controlnet":
            for i, cnet_args in enumerate(named_args):
                named_args[i] = map_controlnet_args_to_api_task_args(cnet_args)

        return named_args


def map_ui_task_args_to_api_task_args(named_args: Dict, script_args: List, is_img2img: bool):
    api_task_args: Dict = named_args.copy()

    prompt_styles = api_task_args.pop("prompt_styles", [])
    api_task_args["styles"] = prompt_styles

    sampler_index = api_task_args.pop("sampler_index", 0)
    api_task_args["sampler_name"] = sd_samplers.samplers[sampler_index].name

    override_settings_texts = api_task_args.pop("override_settings_texts", [])
    api_task_args["override_settings"] = create_override_settings_dict(override_settings_texts)

    if is_img2img:
        mode = api_task_args.pop("mode", 0)
        for arg_mode, image_args in img2img_image_args_by_mode.items():
            if mode != arg_mode:
                for keys in image_args:
                    api_task_args.pop(keys[0], None)

        # the logic below is copied from modules/img2img.py
        if mode == 0:
            image = api_task_args.pop("init_img")
            image = image.convert("RGB") if image else None
            mask = None
        elif mode == 1:
            image = api_task_args.pop("sketch")
            image = image.convert("RGB") if image else None
            mask = None
        elif mode == 2:
            init_img_with_mask: Dict = api_task_args.pop("init_img_with_mask") or {}
            image = init_img_with_mask.get("image", None)
            image = image.convert("RGB") if image else None
            mask = init_img_with_mask.get("mask", None)
            if mask:
                alpha_mask = (
                    ImageOps.invert(image.split()[-1]).convert("L").point(lambda x: 255 if x > 0 else 0, mode="1")
                )
                mask = ImageChops.lighter(alpha_mask, mask.convert("L")).convert("L")
        elif mode == 3:
            image = api_task_args.pop("inpaint_color_sketch")
            orig = api_task_args.pop("inpaint_color_sketch_orig") or image
            if image is not None:
                mask_alpha = api_task_args.pop("mask_alpha", 0)
                mask_blur = api_task_args.get("mask_blur", 4)
                pred = np.any(np.array(image) != np.array(orig), axis=-1)
                mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
                mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
                blur = ImageFilter.GaussianBlur(mask_blur)
                image = Image.composite(image.filter(blur), orig, mask.filter(blur))
                image = image.convert("RGB")
        elif mode == 4:
            image = api_task_args.pop("init_img_inpaint")
            mask = api_task_args.pop("init_mask_inpaint")
        else:
            raise Exception(f"Batch mode is not supported yet")

        image = ImageOps.exif_transpose(image) if image else None
        api_task_args["init_images"] = [encode_image_to_base64(image)] if image else []
        api_task_args["mask"] = encode_image_to_base64(mask) if mask else None

        selected_scale_tab = api_task_args.pop("selected_scale_tab", 0)
        scale_by = api_task_args.get("scale_by", 1)
        if selected_scale_tab == 1 and image:
            api_task_args["width"] = int(image.width * scale_by)
            api_task_args["height"] = int(image.height * scale_by)
    else:
        hr_sampler_index = api_task_args.pop("hr_sampler_index", 0)
        api_task_args["hr_sampler_name"] = (
            sd_samplers.samplers_for_img2img[hr_sampler_index - 1].name if hr_sampler_index != 0 else None
        )

    # script
    script_runner = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img
    script_id = script_args[0]
    if script_id == 0:
        api_task_args["script_name"] = None
        api_task_args["script_args"] = []
    else:
        script: scripts.Script = script_runner.selectable_scripts[script_id - 1]
        api_task_args["script_name"] = script.title().lower()
        current_script_args = script_args[script.args_from : script.args_to]
        api_task_args["script_args"] = map_script_args_list_to_named(script, current_script_args)

    # alwayson scripts
    alwayson_scripts = api_task_args.get("alwayson_scripts", None)
    if not alwayson_scripts:
        api_task_args["alwayson_scripts"] = {}
        alwayson_scripts = api_task_args["alwayson_scripts"]

    for script in script_runner.alwayson_scripts:
        alwayson_script_args = script_args[script.args_from : script.args_to]
        script_name = script.title().lower()
        if script_name != "agent scheduler":
            named_script_args = map_script_args_list_to_named(script, alwayson_script_args)
            alwayson_scripts[script_name] = {"args": named_script_args}

    return api_task_args


def serialize_api_task_args(
    params: Dict,
    is_img2img: bool,
    checkpoint: str = None,
    vae: str = None,
) -> Dict:
    # handle named script args
    script_name = params.get("script_name", None)
    if script_name is not None and script_name != "":
        script = get_script_by_name(script_name, is_img2img)
        if script is None:
            raise Exception(f"Not found script {script_name}")

        script_args = params.get("script_args", {})
        params["script_args"] = map_named_script_args_to_list(script, script_args)

    # handle named alwayson script args
    alwayson_scripts = get_dict_attribute(params, "alwayson_scripts", {})
    assert type(alwayson_scripts) is dict

    script_runner = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img
    allowed_alwayson_scripts = {s.title().lower(): s for s in script_runner.alwayson_scripts}

    valid_alwayson_scripts = {}
    for script_name, script_args in alwayson_scripts.items():
        if script_name.lower() == "agent scheduler":
            continue

        if script_name.lower() not in allowed_alwayson_scripts:
            log.warning(f"Script {script_name} is not in script_runner.alwayson_scripts")
            continue

        script = allowed_alwayson_scripts[script_name.lower()]
        script_args = get_dict_attribute(script_args, "args", [])
        arg_list = map_named_script_args_to_list(script, script_args)
        valid_alwayson_scripts[script_name] = {"args": arg_list}

    params["alwayson_scripts"] = valid_alwayson_scripts

    args = (
        StableDiffusionImg2ImgProcessingAPI(**params) if is_img2img else StableDiffusionTxt2ImgProcessingAPI(**params)
    )

    if args.override_settings is None:
        args.override_settings = {}

    if checkpoint is not None:
        checkpoint_info: CheckpointInfo = get_closet_checkpoint_match(checkpoint)
        if not checkpoint_info:
            log.warning(f"Checkpoint {checkpoint} not found, use current system model")
        else:
            args.override_settings["sd_model_checkpoint"] = checkpoint_info.title

    if vae is not None:
        if vae not in sd_vae.vae_dict:
            log.warning(f"VAE {vae} not found, use current system vae")
        else:
            args.override_settings["sd_vae"] = vae

    # load images from url or file if needed
    if is_img2img:
        init_images = args.init_images
        if len(init_images) == 0:
            raise Exception("At least one init image is required")

        for i, image in enumerate(init_images):
            init_images[i] = encode_image_to_base64(image)

        args.mask = encode_image_to_base64(args.mask)
        if len(init_images) > 1:
            args.batch_size = len(init_images)

    return args.dict()