Spaces:
Runtime error
Runtime error
File size: 19,625 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import io
import zlib
import base64
import pickle
import inspect
import requests
import numpy as np
import torch
from typing import Union, List, Dict
from enum import Enum
from PIL import Image, ImageOps, ImageChops, ImageEnhance, ImageFilter, PngImagePlugin
from numpy import ndarray
from torch import Tensor
from modules import sd_samplers, scripts, shared, sd_vae, images, txt2img, img2img
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.sd_models import CheckpointInfo, get_closet_checkpoint_match
from modules.api.models import (
StableDiffusionTxt2ImgProcessingAPI,
StableDiffusionImg2ImgProcessingAPI,
)
from .helpers import log, get_dict_attribute
img2img_image_args_by_mode: Dict[int, List[List[str]]] = {
0: [["init_img"]],
1: [["sketch"]],
2: [["init_img_with_mask", "image"], ["init_img_with_mask", "mask"]],
3: [["inpaint_color_sketch"], ["inpaint_color_sketch_orig"]],
4: [["init_img_inpaint"], ["init_mask_inpaint"]],
}
def get_script_by_name(script_name: str, is_img2img: bool = False, is_always_on: bool = False) -> scripts.Script:
script_runner = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img
available_scripts = script_runner.alwayson_scripts if is_always_on else script_runner.selectable_scripts
return next(
(s for s in available_scripts if s.title().lower() == script_name.lower()),
None,
)
def load_image_from_url(url: str):
try:
response = requests.get(url)
buffer = io.BytesIO(response.content)
return Image.open(buffer)
except Exception as e:
log.error(f"[AgentScheduler] Error downloading image from url: {e}")
return None
def encode_image_to_base64(image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image.astype("uint8"))
elif isinstance(image, str):
if image.startswith("http://") or image.startswith("https://"):
image = load_image_from_url(image)
if not isinstance(image, Image.Image):
return image
geninfo, _ = images.read_info_from_image(image)
pnginfo = PngImagePlugin.PngInfo()
if geninfo:
pnginfo.add_text("parameters", geninfo)
with io.BytesIO() as output_bytes:
if geninfo:
image.save(output_bytes, format="PNG", pnginfo=pnginfo)
else:
image.save(output_bytes, format="PNG") # remove pnginfo to save space
bytes_data = output_bytes.getvalue()
return "data:image/png;base64," + base64.b64encode(bytes_data).decode("utf-8")
def serialize_image(image):
if isinstance(image, np.ndarray):
shape = image.shape
dtype = image.dtype
data = base64.b64encode(zlib.compress(image.tobytes())).decode()
return {"shape": shape, "data": data, "cls": "ndarray", "dtype": str(dtype)}
elif isinstance(image, torch.Tensor):
shape = image.shape
dtype = image.dtype
data = base64.b64encode(zlib.compress(image.detach().numpy().tobytes())).decode()
return {
"shape": shape,
"data": data,
"cls": "Tensor",
"device": image.device.type,
"dtype": str(dtype),
}
elif isinstance(image, Image.Image):
size = image.size
mode = image.mode
data = base64.b64encode(zlib.compress(image.tobytes())).decode()
return {
"size": size,
"mode": mode,
"data": data,
"cls": "Image",
}
else:
return image
def deserialize_image(image_str):
if isinstance(image_str, dict) and image_str.get("cls", None):
cls = image_str["cls"]
data = zlib.decompress(base64.b64decode(image_str["data"]))
if cls == "ndarray":
# warn if required fields are missing
if image_str.get("dtype", None) is None:
log.warning(f"Missing dtype for ndarray")
shape = tuple(image_str["shape"])
dtype = np.dtype(image_str.get("dtype", "uint8"))
image = np.frombuffer(data, dtype=dtype)
return image.reshape(shape)
elif cls == "Tensor":
if image_str.get("device", None) is None:
log.warning(f"Missing device for Tensor")
shape = tuple(image_str["shape"])
dtype = np.dtype(image_str.get("dtype", "uint8"))
image_np = np.frombuffer(data, dtype=dtype)
return torch.from_numpy(image_np.reshape(shape)).to(device=image_str.get("device", "cpu"))
else:
size = tuple(image_str["size"])
mode = image_str["mode"]
return Image.frombytes(mode, size, data)
else:
return image_str
def serialize_img2img_image_args(args: Dict):
for mode, image_args in img2img_image_args_by_mode.items():
for keys in image_args:
if mode != args["mode"]:
# set None to unused image args to save space
args[keys[0]] = None
elif len(keys) == 1:
image = args.get(keys[0], None)
args[keys[0]] = serialize_image(image)
else:
value = args.get(keys[0], {})
image = value.get(keys[1], None)
value[keys[1]] = serialize_image(image)
args[keys[0]] = value
def deserialize_img2img_image_args(args: Dict):
for mode, image_args in img2img_image_args_by_mode.items():
if mode != args["mode"]:
continue
for keys in image_args:
if len(keys) == 1:
image = args.get(keys[0], None)
args[keys[0]] = deserialize_image(image)
else:
value = args.get(keys[0], {})
image = value.get(keys[1], None)
value[keys[1]] = deserialize_image(image)
args[keys[0]] = value
def serialize_controlnet_args(cnet_unit):
args: Dict = cnet_unit.__dict__
serialized_args = {"is_cnet": True}
for k, v in args.items():
if isinstance(v, Enum):
serialized_args[k] = v.value
else:
serialized_args[k] = v
return serialized_args
def deserialize_controlnet_args(args: Dict):
new_args = args.copy()
new_args.pop("is_cnet", None)
new_args.pop("is_ui", None)
return new_args
def serialize_script_args(script_args: List):
# convert UiControlNetUnit to dict to make it serializable
for i, a in enumerate(script_args):
if type(a).__name__ == "UiControlNetUnit":
script_args[i] = serialize_controlnet_args(a)
return zlib.compress(pickle.dumps(script_args))
def deserialize_script_args(script_args: Union[bytes, List], UiControlNetUnit = None):
if type(script_args) is bytes:
script_args = pickle.loads(zlib.decompress(script_args))
for i, a in enumerate(script_args):
if isinstance(a, dict) and a.get("is_cnet", False):
unit = deserialize_controlnet_args(a)
skip_controlnet = False
if UiControlNetUnit is not None:
u = UiControlNetUnit()
for k, v in unit.items():
if isinstance(getattr(u, k, None), Enum):
# check if v is a valid enum value
enum_obj: Enum= getattr(u, k)
if v not in [e.value for e in enum_obj.__class__]:
log.error(f"Invalid enum value {v} for {k} encountered, valid value is {enum_obj.__class__}")
skip_controlnet = True
break
unit[k] = type(getattr(u, k))(v)
if not skip_controlnet: # valid
unit = UiControlNetUnit(**unit)
if not skip_controlnet: # valid
script_args[i] = unit
return script_args
def map_controlnet_args_to_api_task_args(args: Dict):
if type(args).__name__ == "UiControlNetUnit":
args = args.__dict__
for k, v in args.items():
if k == "image" and v is not None:
args[k] = {
"image": encode_image_to_base64(v["image"]),
"mask": encode_image_to_base64(v["mask"]) if v.get("mask", None) is not None else None,
}
if isinstance(v, Enum):
args[k] = v.value
return args
def map_ui_task_args_list_to_named_args(args: List, is_img2img: bool):
fn = (
getattr(img2img, "img2img_create_processing", img2img.img2img)
if is_img2img
else getattr(txt2img, "txt2img_create_processing", txt2img.txt2img)
)
arg_names = inspect.getfullargspec(fn).args
# SD WebUI 1.5.0 has new request arg
if "request" in arg_names:
args.insert(arg_names.index("request"), None)
named_args = dict(zip(arg_names, args[0 : len(arg_names)]))
script_args = args[len(arg_names) :]
override_settings_texts: List[str] = named_args.get("override_settings_texts", [])
# add clip_skip if not exist in args (vlad fork has this arg)
if named_args.get("clip_skip", None) is None:
clip_skip = next((s for s in override_settings_texts if s.startswith("Clip skip:")), None)
if clip_skip is None and hasattr(shared.opts, "CLIP_stop_at_last_layers"):
override_settings_texts.append(f"Clip skip: {shared.opts.CLIP_stop_at_last_layers}")
named_args["override_settings_texts"] = override_settings_texts
sampler_index = named_args.get("sampler_index", None)
if sampler_index is not None:
available_samplers = sd_samplers.samplers_for_img2img if is_img2img else sd_samplers.samplers
sampler_name = available_samplers[named_args["sampler_index"]].name
named_args["sampler_name"] = sampler_name
log.debug(f"serialize sampler index: {str(sampler_index)} as {sampler_name}")
return (
named_args,
script_args,
)
def map_named_args_to_ui_task_args_list(named_args: Dict, script_args: List, is_img2img: bool):
fn = (
getattr(img2img, "img2img_create_processing", img2img.img2img)
if is_img2img
else getattr(txt2img, "txt2img_create_processing", txt2img.txt2img)
)
arg_names = inspect.getfullargspec(fn).args
sampler_name = named_args.get("sampler_name", None)
if sampler_name is not None:
available_samplers = sd_samplers.samplers_for_img2img if is_img2img else sd_samplers.samplers
sampler_index = next((i for i, x in enumerate(available_samplers) if x.name == sampler_name), 0)
named_args["sampler_index"] = sampler_index
args = [named_args.get(name, None) for name in arg_names]
args.extend(script_args)
return args
def map_script_args_list_to_named(script: scripts.Script, args: List):
script_name = script.title().lower()
if script_name == "controlnet":
for i, cnet_args in enumerate(args):
args[i] = map_controlnet_args_to_api_task_args(cnet_args)
return args
fn = script.process if script.alwayson else script.run
inspection = inspect.getfullargspec(fn)
arg_names = inspection.args[2:]
named_script_args = dict(zip(arg_names, args[: len(arg_names)]))
if inspection.varargs is not None:
named_script_args[inspection.varargs] = args[len(arg_names) :]
return named_script_args
def map_named_script_args_to_list(script: scripts.Script, named_args: Union[dict, list]):
script_name = script.title().lower()
if isinstance(named_args, dict):
fn = script.process if script.alwayson else script.run
inspection = inspect.getfullargspec(fn)
arg_names = inspection.args[2:]
args = [named_args.get(name, None) for name in arg_names]
if inspection.varargs is not None:
args.extend(named_args.get(inspection.varargs, []))
return args
if isinstance(named_args, list):
if script_name == "controlnet":
for i, cnet_args in enumerate(named_args):
named_args[i] = map_controlnet_args_to_api_task_args(cnet_args)
return named_args
def map_ui_task_args_to_api_task_args(named_args: Dict, script_args: List, is_img2img: bool):
api_task_args: Dict = named_args.copy()
prompt_styles = api_task_args.pop("prompt_styles", [])
api_task_args["styles"] = prompt_styles
sampler_index = api_task_args.pop("sampler_index", 0)
api_task_args["sampler_name"] = sd_samplers.samplers[sampler_index].name
override_settings_texts = api_task_args.pop("override_settings_texts", [])
api_task_args["override_settings"] = create_override_settings_dict(override_settings_texts)
if is_img2img:
mode = api_task_args.pop("mode", 0)
for arg_mode, image_args in img2img_image_args_by_mode.items():
if mode != arg_mode:
for keys in image_args:
api_task_args.pop(keys[0], None)
# the logic below is copied from modules/img2img.py
if mode == 0:
image = api_task_args.pop("init_img")
image = image.convert("RGB") if image else None
mask = None
elif mode == 1:
image = api_task_args.pop("sketch")
image = image.convert("RGB") if image else None
mask = None
elif mode == 2:
init_img_with_mask: Dict = api_task_args.pop("init_img_with_mask") or {}
image = init_img_with_mask.get("image", None)
image = image.convert("RGB") if image else None
mask = init_img_with_mask.get("mask", None)
if mask:
alpha_mask = (
ImageOps.invert(image.split()[-1]).convert("L").point(lambda x: 255 if x > 0 else 0, mode="1")
)
mask = ImageChops.lighter(alpha_mask, mask.convert("L")).convert("L")
elif mode == 3:
image = api_task_args.pop("inpaint_color_sketch")
orig = api_task_args.pop("inpaint_color_sketch_orig") or image
if image is not None:
mask_alpha = api_task_args.pop("mask_alpha", 0)
mask_blur = api_task_args.get("mask_blur", 4)
pred = np.any(np.array(image) != np.array(orig), axis=-1)
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
blur = ImageFilter.GaussianBlur(mask_blur)
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
image = image.convert("RGB")
elif mode == 4:
image = api_task_args.pop("init_img_inpaint")
mask = api_task_args.pop("init_mask_inpaint")
else:
raise Exception(f"Batch mode is not supported yet")
image = ImageOps.exif_transpose(image) if image else None
api_task_args["init_images"] = [encode_image_to_base64(image)] if image else []
api_task_args["mask"] = encode_image_to_base64(mask) if mask else None
selected_scale_tab = api_task_args.pop("selected_scale_tab", 0)
scale_by = api_task_args.get("scale_by", 1)
if selected_scale_tab == 1 and image:
api_task_args["width"] = int(image.width * scale_by)
api_task_args["height"] = int(image.height * scale_by)
else:
hr_sampler_index = api_task_args.pop("hr_sampler_index", 0)
api_task_args["hr_sampler_name"] = (
sd_samplers.samplers_for_img2img[hr_sampler_index - 1].name if hr_sampler_index != 0 else None
)
# script
script_runner = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img
script_id = script_args[0]
if script_id == 0:
api_task_args["script_name"] = None
api_task_args["script_args"] = []
else:
script: scripts.Script = script_runner.selectable_scripts[script_id - 1]
api_task_args["script_name"] = script.title().lower()
current_script_args = script_args[script.args_from : script.args_to]
api_task_args["script_args"] = map_script_args_list_to_named(script, current_script_args)
# alwayson scripts
alwayson_scripts = api_task_args.get("alwayson_scripts", None)
if not alwayson_scripts:
api_task_args["alwayson_scripts"] = {}
alwayson_scripts = api_task_args["alwayson_scripts"]
for script in script_runner.alwayson_scripts:
alwayson_script_args = script_args[script.args_from : script.args_to]
script_name = script.title().lower()
if script_name != "agent scheduler":
named_script_args = map_script_args_list_to_named(script, alwayson_script_args)
alwayson_scripts[script_name] = {"args": named_script_args}
return api_task_args
def serialize_api_task_args(
params: Dict,
is_img2img: bool,
checkpoint: str = None,
vae: str = None,
) -> Dict:
# handle named script args
script_name = params.get("script_name", None)
if script_name is not None and script_name != "":
script = get_script_by_name(script_name, is_img2img)
if script is None:
raise Exception(f"Not found script {script_name}")
script_args = params.get("script_args", {})
params["script_args"] = map_named_script_args_to_list(script, script_args)
# handle named alwayson script args
alwayson_scripts = get_dict_attribute(params, "alwayson_scripts", {})
assert type(alwayson_scripts) is dict
script_runner = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img
allowed_alwayson_scripts = {s.title().lower(): s for s in script_runner.alwayson_scripts}
valid_alwayson_scripts = {}
for script_name, script_args in alwayson_scripts.items():
if script_name.lower() == "agent scheduler":
continue
if script_name.lower() not in allowed_alwayson_scripts:
log.warning(f"Script {script_name} is not in script_runner.alwayson_scripts")
continue
script = allowed_alwayson_scripts[script_name.lower()]
script_args = get_dict_attribute(script_args, "args", [])
arg_list = map_named_script_args_to_list(script, script_args)
valid_alwayson_scripts[script_name] = {"args": arg_list}
params["alwayson_scripts"] = valid_alwayson_scripts
args = (
StableDiffusionImg2ImgProcessingAPI(**params) if is_img2img else StableDiffusionTxt2ImgProcessingAPI(**params)
)
if args.override_settings is None:
args.override_settings = {}
if checkpoint is not None:
checkpoint_info: CheckpointInfo = get_closet_checkpoint_match(checkpoint)
if not checkpoint_info:
log.warning(f"Checkpoint {checkpoint} not found, use current system model")
else:
args.override_settings["sd_model_checkpoint"] = checkpoint_info.title
if vae is not None:
if vae not in sd_vae.vae_dict:
log.warning(f"VAE {vae} not found, use current system vae")
else:
args.override_settings["sd_vae"] = vae
# load images from url or file if needed
if is_img2img:
init_images = args.init_images
if len(init_images) == 0:
raise Exception("At least one init image is required")
for i, image in enumerate(init_images):
init_images[i] = encode_image_to_base64(image)
args.mask = encode_image_to_base64(args.mask)
if len(init_images) > 1:
args.batch_size = len(init_images)
return args.dict()
|