File size: 11,180 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from __future__ import annotations
from typing import List, NamedTuple, Tuple, Union

import torch
import torch.nn as nn
import numpy as np
from transformers.models.clip.modeling_clip import CLIPVisionModelOutput

from .image_proj_models import (
    Resampler,
    ImageProjModel,
    MLPProjModel,
    MLPProjModelFaceId,
    ProjModelFaceIdPlus,
)


class ImageEmbed(NamedTuple):
    """Image embed for a single image."""

    cond_emb: torch.Tensor
    uncond_emb: torch.Tensor

    def eval(self, cond_mark: torch.Tensor) -> torch.Tensor:
        assert cond_mark.ndim == 4
        assert self.cond_emb.ndim == self.uncond_emb.ndim == 3
        assert (
            self.uncond_emb.shape[0] == 1
            or self.cond_emb.shape[0] == self.uncond_emb.shape[0]
        )
        assert (
            self.cond_emb.shape[0] == 1 or self.cond_emb.shape[0] == cond_mark.shape[0]
        )
        cond_mark = cond_mark[:, :, :, 0].to(self.cond_emb)
        device = cond_mark.device
        dtype = cond_mark.dtype
        return self.cond_emb.to(
            device=device, dtype=dtype
        ) * cond_mark + self.uncond_emb.to(device=device, dtype=dtype) * (1 - cond_mark)

    def average_of(*args: List[Tuple[torch.Tensor, torch.Tensor]]) -> "ImageEmbed":
        conds, unconds = zip(*args)

        def average_tensors(tensors: List[torch.Tensor]) -> torch.Tensor:
            return torch.sum(torch.stack(tensors), dim=0) / len(tensors)

        return ImageEmbed(average_tensors(conds), average_tensors(unconds))


class To_KV(torch.nn.Module):
    def __init__(self, state_dict):
        super().__init__()

        self.to_kvs = nn.ModuleDict()
        for key, value in state_dict.items():
            k = key.replace(".weight", "").replace(".", "_")
            self.to_kvs[k] = nn.Linear(value.shape[1], value.shape[0], bias=False)
            self.to_kvs[k].weight.data = value


class IPAdapterModel(torch.nn.Module):
    def __init__(
        self,
        state_dict,
        clip_embeddings_dim,
        cross_attention_dim,
        is_plus,
        is_sdxl: bool,
        sdxl_plus,
        is_full,
        is_faceid: bool,
        is_portrait: bool,
        is_instantid: bool,
        is_v2: bool,
    ):
        super().__init__()
        self.device = "cpu"

        self.clip_embeddings_dim = clip_embeddings_dim
        self.cross_attention_dim = cross_attention_dim
        self.is_plus = is_plus
        self.is_sdxl = is_sdxl
        self.sdxl_plus = sdxl_plus
        self.is_full = is_full
        self.is_v2 = is_v2
        self.is_faceid = is_faceid
        self.is_instantid = is_instantid
        self.clip_extra_context_tokens = 16 if (self.is_plus or is_portrait) else 4

        if is_instantid:
            self.image_proj_model = self.init_proj_instantid()
        elif is_faceid:
            self.image_proj_model = self.init_proj_faceid()
        elif self.is_plus:
            if self.is_full:
                self.image_proj_model = MLPProjModel(
                    cross_attention_dim=cross_attention_dim,
                    clip_embeddings_dim=clip_embeddings_dim,
                )
            else:
                self.image_proj_model = Resampler(
                    dim=1280 if sdxl_plus else cross_attention_dim,
                    depth=4,
                    dim_head=64,
                    heads=20 if sdxl_plus else 12,
                    num_queries=self.clip_extra_context_tokens,
                    embedding_dim=clip_embeddings_dim,
                    output_dim=self.cross_attention_dim,
                    ff_mult=4,
                )
        else:
            self.clip_extra_context_tokens = (
                state_dict["image_proj"]["proj.weight"].shape[0]
                // self.cross_attention_dim
            )

            self.image_proj_model = ImageProjModel(
                cross_attention_dim=self.cross_attention_dim,
                clip_embeddings_dim=clip_embeddings_dim,
                clip_extra_context_tokens=self.clip_extra_context_tokens,
            )

        self.image_proj_model.load_state_dict(state_dict["image_proj"])
        self.ip_layers = To_KV(state_dict["ip_adapter"])

    def init_proj_faceid(self):
        if self.is_plus:
            image_proj_model = ProjModelFaceIdPlus(
                cross_attention_dim=self.cross_attention_dim,
                id_embeddings_dim=512,
                clip_embeddings_dim=self.clip_embeddings_dim,
                num_tokens=4,
            )
        else:
            image_proj_model = MLPProjModelFaceId(
                cross_attention_dim=self.cross_attention_dim,
                id_embeddings_dim=512,
                num_tokens=self.clip_extra_context_tokens,
            )
        return image_proj_model

    def init_proj_instantid(self, image_emb_dim=512, num_tokens=16):
        image_proj_model = Resampler(
            dim=1280,
            depth=4,
            dim_head=64,
            heads=20,
            num_queries=num_tokens,
            embedding_dim=image_emb_dim,
            output_dim=self.cross_attention_dim,
            ff_mult=4,
        )
        return image_proj_model

    @torch.inference_mode()
    def _get_image_embeds(
        self, clip_vision_output: CLIPVisionModelOutput
    ) -> ImageEmbed:
        self.image_proj_model.to(self.device)

        if self.is_plus:
            from annotator.clipvision import clip_vision_h_uc, clip_vision_vith_uc

            cond = self.image_proj_model(
                clip_vision_output["hidden_states"][-2].to(
                    device=self.device, dtype=torch.float32
                )
            )
            uncond = (
                clip_vision_vith_uc.to(cond)
                if self.sdxl_plus
                else self.image_proj_model(clip_vision_h_uc.to(cond))
            )
            return ImageEmbed(cond, uncond)

        clip_image_embeds = clip_vision_output["image_embeds"].to(
            device=self.device, dtype=torch.float32
        )
        image_prompt_embeds = self.image_proj_model(clip_image_embeds)
        # input zero vector for unconditional.
        uncond_image_prompt_embeds = self.image_proj_model(
            torch.zeros_like(clip_image_embeds)
        )
        return ImageEmbed(image_prompt_embeds, uncond_image_prompt_embeds)

    @torch.inference_mode()
    def _get_image_embeds_faceid_plus(
        self,
        face_embed: torch.Tensor,
        clip_vision_output: CLIPVisionModelOutput,
        is_v2: bool,
    ) -> ImageEmbed:
        face_embed = face_embed.to(self.device, dtype=torch.float32)
        from annotator.clipvision import clip_vision_h_uc

        clip_embed = clip_vision_output["hidden_states"][-2].to(
            device=self.device, dtype=torch.float32
        )
        return ImageEmbed(
            self.image_proj_model(face_embed, clip_embed, shortcut=is_v2),
            self.image_proj_model(
                torch.zeros_like(face_embed),
                clip_vision_h_uc.to(clip_embed),
                shortcut=is_v2,
            ),
        )

    @torch.inference_mode()
    def _get_image_embeds_faceid(self, insightface_output: torch.Tensor) -> ImageEmbed:
        """Get image embeds for non-plus faceid. Multiple inputs are supported."""
        self.image_proj_model.to(self.device)
        faceid_embed = insightface_output.to(self.device, dtype=torch.float32)
        return ImageEmbed(
            self.image_proj_model(faceid_embed),
            self.image_proj_model(torch.zeros_like(faceid_embed)),
        )

    @torch.inference_mode()
    def _get_image_embeds_instantid(
        self, prompt_image_emb: Union[torch.Tensor, np.ndarray]
    ) -> ImageEmbed:
        """Get image embeds for instantid."""
        image_proj_model_in_features = 512
        if isinstance(prompt_image_emb, torch.Tensor):
            prompt_image_emb = prompt_image_emb.clone().detach()
        else:
            prompt_image_emb = torch.tensor(prompt_image_emb)

        prompt_image_emb = prompt_image_emb.to(device=self.device, dtype=torch.float32)
        prompt_image_emb = prompt_image_emb.reshape(
            [1, -1, image_proj_model_in_features]
        )
        return ImageEmbed(
            self.image_proj_model(prompt_image_emb),
            self.image_proj_model(torch.zeros_like(prompt_image_emb)),
        )

    @staticmethod
    def load(state_dict: dict, model_name: str) -> IPAdapterModel:
        """
        Arguments:
            - state_dict: model state_dict.
            - model_name: file name of the model.
        """
        is_v2 = "v2" in model_name
        is_faceid = "faceid" in model_name
        is_instantid = "instant_id" in model_name
        is_portrait = "portrait" in model_name
        is_full = "proj.3.weight" in state_dict["image_proj"]
        is_plus = (
            is_full
            or "latents" in state_dict["image_proj"]
            or "perceiver_resampler.proj_in.weight" in state_dict["image_proj"]
        )
        cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1]
        sdxl = cross_attention_dim == 2048
        sdxl_plus = sdxl and is_plus

        if is_instantid:
            # InstantID does not use clip embedding.
            clip_embeddings_dim = None
        elif is_faceid:
            if is_plus:
                clip_embeddings_dim = 1280
            else:
                # Plain faceid does not use clip_embeddings_dim.
                clip_embeddings_dim = None
        elif is_plus:
            if sdxl_plus:
                clip_embeddings_dim = int(state_dict["image_proj"]["latents"].shape[2])
            elif is_full:
                clip_embeddings_dim = int(
                    state_dict["image_proj"]["proj.0.weight"].shape[1]
                )
            else:
                clip_embeddings_dim = int(
                    state_dict["image_proj"]["proj_in.weight"].shape[1]
                )
        else:
            clip_embeddings_dim = int(state_dict["image_proj"]["proj.weight"].shape[1])

        return IPAdapterModel(
            state_dict,
            clip_embeddings_dim=clip_embeddings_dim,
            cross_attention_dim=cross_attention_dim,
            is_plus=is_plus,
            is_sdxl=sdxl,
            sdxl_plus=sdxl_plus,
            is_full=is_full,
            is_faceid=is_faceid,
            is_portrait=is_portrait,
            is_instantid=is_instantid,
            is_v2=is_v2,
        )

    def get_image_emb(self, preprocessor_output) -> ImageEmbed:
        if self.is_instantid:
            return self._get_image_embeds_instantid(preprocessor_output)
        elif self.is_faceid and self.is_plus:
            # Note: FaceID plus uses both face_embed and clip_embed.
            # This should be the return value from preprocessor.
            return self._get_image_embeds_faceid_plus(
                preprocessor_output.face_embed,
                preprocessor_output.clip_embed,
                is_v2=self.is_v2,
            )
        elif self.is_faceid:
            return self._get_image_embeds_faceid(preprocessor_output)
        else:
            return self._get_image_embeds(preprocessor_output)