File size: 5,167 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""Preprocessors that do not need to run a torch model."""

import cv2
import numpy as np

from ..supported_preprocessor import Preprocessor, PreprocessorParameter
from ..utils import resize_image_with_pad
from annotator.util import HWC3


class PreprocessorNone(Preprocessor):
    def __init__(self):
        super().__init__(name="none")
        self.sorting_priority = 10
        self.tags = ["InstructP2P"]

    def __call__(
        self,
        input_image,
        resolution,
        slider_1=None,
        slider_2=None,
        slider_3=None,
        input_mask=None,
        **kwargs
    ):
        return input_image


class PreprocessorCanny(Preprocessor):
    def __init__(self):
        super().__init__(name="canny")
        self.tags = ["Canny"]
        self.slider_1 = PreprocessorParameter(
            minimum=1,
            maximum=255,
            step=1,
            value=100,
            label="Low Threshold",
        )
        self.slider_2 = PreprocessorParameter(
            minimum=1,
            maximum=255,
            step=1,
            value=200,
            label="High Threshold",
        )
        self.sorting_priority = 100
        self.use_soft_projection_in_hr_fix = True

    def __call__(
        self,
        input_image,
        resolution,
        slider_1=None,
        slider_2=None,
        slider_3=None,
        **kwargs
    ):
        input_image, remove_pad = resize_image_with_pad(input_image, resolution)
        canny_image = cv2.cvtColor(
            cv2.Canny(input_image, int(slider_1), int(slider_2)), cv2.COLOR_GRAY2RGB
        )
        return remove_pad(canny_image)


class PreprocessorInvert(Preprocessor):
    def __init__(self):
        super().__init__(name="invert")
        self._label = "invert (from white bg & black line)"
        self.tags = [
            "Canny",
            "Lineart",
            "Scribble",
            "MLSD",
        ]
        self.slider_resolution = PreprocessorParameter(visible=False)
        self.sorting_priority = 20

    def __call__(
        self,
        input_image,
        resolution,
        slider_1=None,
        slider_2=None,
        slider_3=None,
        **kwargs
    ):
        return 255 - HWC3(input_image)


class PreprocessorBlurGaussian(Preprocessor):
    def __init__(self):
        super().__init__(name="blur_gaussian")
        self.slider_1 = PreprocessorParameter(
            label="Sigma", minimum=64, maximum=2048, value=512
        )
        self.tags = ["Tile"]

    def __call__(
        self,
        input_image,
        resolution,
        slider_1=None,
        slider_2=None,
        slider_3=None,
        input_mask=None,
        **kwargs
    ):
        img, remove_pad = resize_image_with_pad(input_image, resolution)
        img = remove_pad(img)
        result = cv2.GaussianBlur(img, (0, 0), float(slider_1))
        return result


class PreprocessorScribbleXdog(Preprocessor):
    def __init__(self):
        super().__init__(name="scribble_xdog")
        self.slider_1 = PreprocessorParameter(
            label="XDoG Threshold", minimum=1, maximum=64, value=32
        )
        self.tags = [
            "Scribble",
            "SparseCtrl",
        ]

    def __call__(
        self,
        input_image,
        resolution,
        slider_1=None,
        slider_2=None,
        slider_3=None,
        input_mask=None,
        **kwargs
    ):
        img, remove_pad = resize_image_with_pad(input_image, resolution)
        g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
        g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
        dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
        result = np.zeros_like(img, dtype=np.uint8)
        result[2 * (255 - dog) > slider_1] = 255
        return remove_pad(result)


class PreprocessorShuffle(Preprocessor):
    def __init__(self):
        super().__init__(name="shuffle")
        self.tags = ["Shuffle"]
        self.model_shuffle = None
        # Fix res to 512.
        self.slider_resolution = PreprocessorParameter(value=512, visible=False)

    def cached_call(self, *args, **kwargs):
        """No cache for shuffle, as each call depends on different numpy seed."""
        return self(*args, **kwargs)

    def __call__(
        self,
        input_image,
        resolution,
        slider_1=None,
        slider_2=None,
        slider_3=None,
        input_mask=None,
        **kwargs
    ):
        img, remove_pad = resize_image_with_pad(input_image, resolution)
        img = remove_pad(img)
        if self.model_shuffle is None:
            from annotator.shuffle import ContentShuffleDetector

            self.model_shuffle = ContentShuffleDetector()
        result = self.model_shuffle(img)
        return result


Preprocessor.add_supported_preprocessor(PreprocessorNone())
Preprocessor.add_supported_preprocessor(PreprocessorCanny())
Preprocessor.add_supported_preprocessor(PreprocessorInvert())
Preprocessor.add_supported_preprocessor(PreprocessorBlurGaussian())
Preprocessor.add_supported_preprocessor(PreprocessorScribbleXdog())
Preprocessor.add_supported_preprocessor(PreprocessorShuffle())