File size: 4,213 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import cv2
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from modules import devices
from modules.shared import opts
from modules.control.util import HWC3, resize_image
from .leres.depthmap import estimateboost, estimateleres
from .leres.multi_depth_model_woauxi import RelDepthModel
from .leres.net_tools import strip_prefix_if_present
from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel
from .pix2pix.options.test_options import TestOptions


class LeresDetector:
    def __init__(self, model, pix2pixmodel):
        self.model = model
        self.pix2pixmodel = pix2pixmodel

    @classmethod
    def from_pretrained(cls, pretrained_model_or_path, filename=None, pix2pix_filename=None, cache_dir=None):
        filename = filename or "res101.pth"
        pix2pix_filename = pix2pix_filename or "latest_net_G.pth"
        if os.path.isdir(pretrained_model_or_path):
            model_path = os.path.join(pretrained_model_or_path, filename)
        else:
            model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir)
        checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
        model = RelDepthModel(backbone='resnext101')
        model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True)
        del checkpoint
        if os.path.isdir(pretrained_model_or_path):
            model_path = os.path.join(pretrained_model_or_path, pix2pix_filename)
        else:
            model_path = hf_hub_download(pretrained_model_or_path, pix2pix_filename, cache_dir=cache_dir)
        opt = TestOptions().parse()
        if not torch.cuda.is_available():
            opt.gpu_ids = []  # cpu mode
        pix2pixmodel = Pix2Pix4DepthModel(opt)
        pix2pixmodel.save_dir = os.path.dirname(model_path)
        pix2pixmodel.load_networks('latest')
        pix2pixmodel.eval()
        return cls(model, pix2pixmodel)

    def to(self, device):
        self.model.to(device)
        return self

    def __call__(self, input_image, thr_a=0, thr_b=0, boost=False, detect_resolution=512, image_resolution=512, output_type="pil"):
        self.model.to(devices.device)
        # device = next(iter(self.model.parameters())).device
        if not isinstance(input_image, np.ndarray):
            input_image = np.array(input_image, dtype=np.uint8)
        input_image = HWC3(input_image)
        input_image = resize_image(input_image, detect_resolution)
        assert input_image.ndim == 3
        height, width, _dim = input_image.shape
        if boost:
            depth = estimateboost(input_image, self.model, 0, self.pix2pixmodel, max(width, height))
        else:
            depth = estimateleres(input_image, self.model, width, height)
        numbytes=2
        depth_min = depth.min()
        depth_max = depth.max()
        max_val = (2**(8*numbytes))-1
        # check output before normalizing and mapping to 16 bit
        if depth_max - depth_min > np.finfo("float").eps:
            out = max_val * (depth - depth_min) / (depth_max - depth_min)
        else:
            out = np.zeros(depth.shape)
        # single channel, 16 bit image
        depth_image = out.astype("uint16")
        # convert to uint8
        depth_image = cv2.convertScaleAbs(depth_image, alpha=255.0/65535.0)
        # remove near
        if thr_a != 0:
            thr_a = thr_a/100*255
            depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1]
        # invert image
        depth_image = cv2.bitwise_not(depth_image)
        # remove bg
        if thr_b != 0:
            thr_b = thr_b/100*255
            depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1]
        detected_map = depth_image
        detected_map = HWC3(detected_map)
        img = resize_image(input_image, image_resolution)
        H, W, _C = img.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
        if opts.control_move_processor:
            self.model.to('cpu')
        if output_type == "pil":
            detected_map = Image.fromarray(detected_map)
        return detected_map