File size: 11,651 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from functools import partial
import json
import math
from pathlib import Path

from jsonmerge import merge

from . import augmentation, layers, models, utils


def round_to_power_of_two(x, tol):
    approxs = []
    for i in range(math.ceil(math.log2(x))):
        mult = 2**i
        approxs.append(round(x / mult) * mult)
    for approx in reversed(approxs):
        error = abs((approx - x) / x)
        if error <= tol:
            return approx
    return approxs[0]


def load_config(path_or_dict):
    defaults_image_v1 = {
        'model': {
            'patch_size': 1,
            'augment_wrapper': True,
            'mapping_cond_dim': 0,
            'unet_cond_dim': 0,
            'cross_cond_dim': 0,
            'cross_attn_depths': None,
            'skip_stages': 0,
            'has_variance': False,
        },
        'optimizer': {
            'type': 'adamw',
            'lr': 1e-4,
            'betas': [0.95, 0.999],
            'eps': 1e-6,
            'weight_decay': 1e-3,
        },
    }
    defaults_image_transformer_v1 = {
        'model': {
            'd_ff': 0,
            'augment_wrapper': False,
            'skip_stages': 0,
            'has_variance': False,
        },
        'optimizer': {
            'type': 'adamw',
            'lr': 5e-4,
            'betas': [0.9, 0.99],
            'eps': 1e-8,
            'weight_decay': 1e-4,
        },
    }
    defaults_image_transformer_v2 = {
        'model': {
            'mapping_width': 256,
            'mapping_depth': 2,
            'mapping_d_ff': None,
            'mapping_cond_dim': 0,
            'mapping_dropout_rate': 0.,
            'd_ffs': None,
            'self_attns': None,
            'dropout_rate': None,
            'augment_wrapper': False,
            'skip_stages': 0,
            'has_variance': False,
        },
        'optimizer': {
            'type': 'adamw',
            'lr': 5e-4,
            'betas': [0.9, 0.99],
            'eps': 1e-8,
            'weight_decay': 1e-4,
        },
    }
    defaults = {
        'model': {
            'sigma_data': 1.,
            'dropout_rate': 0.,
            'augment_prob': 0.,
            'loss_config': 'karras',
            'loss_weighting': 'karras',
            'loss_scales': 1,
        },
        'dataset': {
            'type': 'imagefolder',
            'num_classes': 0,
            'cond_dropout_rate': 0.1,
        },
        'optimizer': {
            'type': 'adamw',
            'lr': 1e-4,
            'betas': [0.9, 0.999],
            'eps': 1e-8,
            'weight_decay': 1e-4,
        },
        'lr_sched': {
            'type': 'constant',
            'warmup': 0.,
        },
        'ema_sched': {
            'type': 'inverse',
            'power': 0.6667,
            'max_value': 0.9999
        },
    }
    if not isinstance(path_or_dict, dict):
        file = Path(path_or_dict)
        if file.suffix == '.safetensors':
            metadata = utils.get_safetensors_metadata(file)
            config = json.loads(metadata['config'])
        else:
            config = json.loads(file.read_text())
    else:
        config = path_or_dict
    if config['model']['type'] == 'image_v1':
        config = merge(defaults_image_v1, config)
    elif config['model']['type'] == 'image_transformer_v1':
        config = merge(defaults_image_transformer_v1, config)
        if not config['model']['d_ff']:
            config['model']['d_ff'] = round_to_power_of_two(config['model']['width'] * 8 / 3, tol=0.05)
    elif config['model']['type'] == 'image_transformer_v2':
        config = merge(defaults_image_transformer_v2, config)
        if not config['model']['mapping_d_ff']:
            config['model']['mapping_d_ff'] = config['model']['mapping_width'] * 3
        if not config['model']['d_ffs']:
            d_ffs = []
            for width in config['model']['widths']:
                d_ffs.append(width * 3)
            config['model']['d_ffs'] = d_ffs
        if not config['model']['self_attns']:
            self_attns = []
            default_neighborhood = {"type": "neighborhood", "d_head": 64, "kernel_size": 7}
            default_global = {"type": "global", "d_head": 64}
            for i in range(len(config['model']['widths'])):
                self_attns.append(default_neighborhood if i < len(config['model']['widths']) - 1 else default_global)
            config['model']['self_attns'] = self_attns
        if config['model']['dropout_rate'] is None:
            config['model']['dropout_rate'] = [0.0] * len(config['model']['widths'])
        elif isinstance(config['model']['dropout_rate'], float):
            config['model']['dropout_rate'] = [config['model']['dropout_rate']] * len(config['model']['widths'])
    return merge(defaults, config)


def make_model(config):
    dataset_config = config['dataset']
    num_classes = dataset_config['num_classes']
    config = config['model']
    if config['type'] == 'image_v1':
        model = models.ImageDenoiserModelV1(
            config['input_channels'],
            config['mapping_out'],
            config['depths'],
            config['channels'],
            config['self_attn_depths'],
            config['cross_attn_depths'],
            patch_size=config['patch_size'],
            dropout_rate=config['dropout_rate'],
            mapping_cond_dim=config['mapping_cond_dim'] + (9 if config['augment_wrapper'] else 0),
            unet_cond_dim=config['unet_cond_dim'],
            cross_cond_dim=config['cross_cond_dim'],
            skip_stages=config['skip_stages'],
            has_variance=config['has_variance'],
        )
        if config['augment_wrapper']:
            model = augmentation.KarrasAugmentWrapper(model)
    elif config['type'] == 'image_transformer_v1':
        model = models.ImageTransformerDenoiserModelV1(
            n_layers=config['depth'],
            d_model=config['width'],
            d_ff=config['d_ff'],
            in_features=config['input_channels'],
            out_features=config['input_channels'],
            patch_size=config['patch_size'],
            num_classes=num_classes + 1 if num_classes else 0,
            dropout=config['dropout_rate'],
            sigma_data=config['sigma_data'],
        )
    elif config['type'] == 'image_transformer_v2':
        assert len(config['widths']) == len(config['depths'])
        assert len(config['widths']) == len(config['d_ffs'])
        assert len(config['widths']) == len(config['self_attns'])
        assert len(config['widths']) == len(config['dropout_rate'])
        levels = []
        for depth, width, d_ff, self_attn, dropout in zip(config['depths'], config['widths'], config['d_ffs'], config['self_attns'], config['dropout_rate']):
            if self_attn['type'] == 'global':
                self_attn = models.image_transformer_v2.GlobalAttentionSpec(self_attn.get('d_head', 64))
            elif self_attn['type'] == 'neighborhood':
                self_attn = models.image_transformer_v2.NeighborhoodAttentionSpec(self_attn.get('d_head', 64), self_attn.get('kernel_size', 7))
            elif self_attn['type'] == 'shifted-window':
                self_attn = models.image_transformer_v2.ShiftedWindowAttentionSpec(self_attn.get('d_head', 64), self_attn['window_size'])
            elif self_attn['type'] == 'none':
                self_attn = models.image_transformer_v2.NoAttentionSpec()
            else:
                raise ValueError(f'unsupported self attention type {self_attn["type"]}')
            levels.append(models.image_transformer_v2.LevelSpec(depth, width, d_ff, self_attn, dropout))
        mapping = models.image_transformer_v2.MappingSpec(config['mapping_depth'], config['mapping_width'], config['mapping_d_ff'], config['mapping_dropout_rate'])
        model = models.ImageTransformerDenoiserModelV2(
            levels=levels,
            mapping=mapping,
            in_channels=config['input_channels'],
            out_channels=config['input_channels'],
            patch_size=config['patch_size'],
            num_classes=num_classes + 1 if num_classes else 0,
            mapping_cond_dim=config['mapping_cond_dim'],
        )
    else:
        raise ValueError(f'unsupported model type {config["type"]}')
    return model


def make_denoiser_wrapper(config):
    config = config['model']
    sigma_data = config.get('sigma_data', 1.)
    has_variance = config.get('has_variance', False)
    loss_config = config.get('loss_config', 'karras')
    if loss_config == 'karras':
        weighting = config.get('loss_weighting', 'karras')
        scales = config.get('loss_scales', 1)
        if not has_variance:
            return partial(layers.Denoiser, sigma_data=sigma_data, weighting=weighting, scales=scales)
        return partial(layers.DenoiserWithVariance, sigma_data=sigma_data, weighting=weighting)
    if loss_config == 'simple':
        if has_variance:
            raise ValueError('Simple loss config does not support a variance output')
        return partial(layers.SimpleLossDenoiser, sigma_data=sigma_data)
    raise ValueError('Unknown loss config type')


def make_sample_density(config):
    sd_config = config['sigma_sample_density']
    sigma_data = config['sigma_data']
    if sd_config['type'] == 'lognormal':
        loc = sd_config['mean'] if 'mean' in sd_config else sd_config['loc']
        scale = sd_config['std'] if 'std' in sd_config else sd_config['scale']
        return partial(utils.rand_log_normal, loc=loc, scale=scale)
    if sd_config['type'] == 'loglogistic':
        loc = sd_config['loc'] if 'loc' in sd_config else math.log(sigma_data)
        scale = sd_config['scale'] if 'scale' in sd_config else 0.5
        min_value = sd_config['min_value'] if 'min_value' in sd_config else 0.
        max_value = sd_config['max_value'] if 'max_value' in sd_config else float('inf')
        return partial(utils.rand_log_logistic, loc=loc, scale=scale, min_value=min_value, max_value=max_value)
    if sd_config['type'] == 'loguniform':
        min_value = sd_config['min_value'] if 'min_value' in sd_config else config['sigma_min']
        max_value = sd_config['max_value'] if 'max_value' in sd_config else config['sigma_max']
        return partial(utils.rand_log_uniform, min_value=min_value, max_value=max_value)
    if sd_config['type'] in {'v-diffusion', 'cosine'}:
        min_value = sd_config['min_value'] if 'min_value' in sd_config else 1e-3
        max_value = sd_config['max_value'] if 'max_value' in sd_config else 1e3
        return partial(utils.rand_v_diffusion, sigma_data=sigma_data, min_value=min_value, max_value=max_value)
    if sd_config['type'] == 'split-lognormal':
        loc = sd_config['mean'] if 'mean' in sd_config else sd_config['loc']
        scale_1 = sd_config['std_1'] if 'std_1' in sd_config else sd_config['scale_1']
        scale_2 = sd_config['std_2'] if 'std_2' in sd_config else sd_config['scale_2']
        return partial(utils.rand_split_log_normal, loc=loc, scale_1=scale_1, scale_2=scale_2)
    if sd_config['type'] == 'cosine-interpolated':
        min_value = sd_config.get('min_value', min(config['sigma_min'], 1e-3))
        max_value = sd_config.get('max_value', max(config['sigma_max'], 1e3))
        image_d = sd_config.get('image_d', max(config['input_size']))
        noise_d_low = sd_config.get('noise_d_low', 32)
        noise_d_high = sd_config.get('noise_d_high', max(config['input_size']))
        return partial(utils.rand_cosine_interpolated, image_d=image_d, noise_d_low=noise_d_low, noise_d_high=noise_d_high, sigma_data=sigma_data, min_value=min_value, max_value=max_value)

    raise ValueError('Unknown sample density type')