Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from .. import layers, utils | |
def orthogonal_(module): | |
nn.init.orthogonal_(module.weight) | |
return module | |
class ResConvBlock(layers.ConditionedResidualBlock): | |
def __init__(self, feats_in, c_in, c_mid, c_out, group_size=32, dropout_rate=0.): | |
skip = None if c_in == c_out else orthogonal_(nn.Conv2d(c_in, c_out, 1, bias=False)) | |
super().__init__( | |
layers.AdaGN(feats_in, c_in, max(1, c_in // group_size)), | |
nn.GELU(), | |
nn.Conv2d(c_in, c_mid, 3, padding=1), | |
nn.Dropout2d(dropout_rate, inplace=True), | |
layers.AdaGN(feats_in, c_mid, max(1, c_mid // group_size)), | |
nn.GELU(), | |
nn.Conv2d(c_mid, c_out, 3, padding=1), | |
nn.Dropout2d(dropout_rate, inplace=True), | |
skip=skip) | |
nn.init.zeros_(self.main[-2].weight) | |
nn.init.zeros_(self.main[-2].bias) | |
class DBlock(layers.ConditionedSequential): | |
def __init__(self, n_layers, feats_in, c_in, c_mid, c_out, group_size=32, head_size=64, dropout_rate=0., downsample=False, self_attn=False, cross_attn=False, c_enc=0): | |
modules = [nn.Identity()] | |
for i in range(n_layers): | |
my_c_in = c_in if i == 0 else c_mid | |
my_c_out = c_mid if i < n_layers - 1 else c_out | |
modules.append(ResConvBlock(feats_in, my_c_in, c_mid, my_c_out, group_size, dropout_rate)) | |
if self_attn: | |
norm = lambda c_in: layers.AdaGN(feats_in, c_in, max(1, my_c_out // group_size)) | |
modules.append(layers.SelfAttention2d(my_c_out, max(1, my_c_out // head_size), norm, dropout_rate)) | |
if cross_attn: | |
norm = lambda c_in: layers.AdaGN(feats_in, c_in, max(1, my_c_out // group_size)) | |
modules.append(layers.CrossAttention2d(my_c_out, c_enc, max(1, my_c_out // head_size), norm, dropout_rate)) | |
super().__init__(*modules) | |
self.set_downsample(downsample) | |
def set_downsample(self, downsample): | |
self[0] = layers.Downsample2d() if downsample else nn.Identity() | |
return self | |
class UBlock(layers.ConditionedSequential): | |
def __init__(self, n_layers, feats_in, c_in, c_mid, c_out, group_size=32, head_size=64, dropout_rate=0., upsample=False, self_attn=False, cross_attn=False, c_enc=0): | |
modules = [] | |
for i in range(n_layers): | |
my_c_in = c_in if i == 0 else c_mid | |
my_c_out = c_mid if i < n_layers - 1 else c_out | |
modules.append(ResConvBlock(feats_in, my_c_in, c_mid, my_c_out, group_size, dropout_rate)) | |
if self_attn: | |
norm = lambda c_in: layers.AdaGN(feats_in, c_in, max(1, my_c_out // group_size)) | |
modules.append(layers.SelfAttention2d(my_c_out, max(1, my_c_out // head_size), norm, dropout_rate)) | |
if cross_attn: | |
norm = lambda c_in: layers.AdaGN(feats_in, c_in, max(1, my_c_out // group_size)) | |
modules.append(layers.CrossAttention2d(my_c_out, c_enc, max(1, my_c_out // head_size), norm, dropout_rate)) | |
modules.append(nn.Identity()) | |
super().__init__(*modules) | |
self.set_upsample(upsample) | |
def forward(self, input, cond, skip=None): | |
if skip is not None: | |
input = torch.cat([input, skip], dim=1) | |
return super().forward(input, cond) | |
def set_upsample(self, upsample): | |
self[-1] = layers.Upsample2d() if upsample else nn.Identity() | |
return self | |
class MappingNet(nn.Sequential): | |
def __init__(self, feats_in, feats_out, n_layers=2): | |
layers = [] | |
for i in range(n_layers): | |
layers.append(orthogonal_(nn.Linear(feats_in if i == 0 else feats_out, feats_out))) | |
layers.append(nn.GELU()) | |
super().__init__(*layers) | |
class ImageDenoiserModelV1(nn.Module): | |
def __init__(self, c_in, feats_in, depths, channels, self_attn_depths, cross_attn_depths=None, mapping_cond_dim=0, unet_cond_dim=0, cross_cond_dim=0, dropout_rate=0., patch_size=1, skip_stages=0, has_variance=False): | |
super().__init__() | |
self.c_in = c_in | |
self.channels = channels | |
self.unet_cond_dim = unet_cond_dim | |
self.patch_size = patch_size | |
self.has_variance = has_variance | |
self.timestep_embed = layers.FourierFeatures(1, feats_in) | |
if mapping_cond_dim > 0: | |
self.mapping_cond = nn.Linear(mapping_cond_dim, feats_in, bias=False) | |
self.mapping = MappingNet(feats_in, feats_in) | |
self.proj_in = nn.Conv2d((c_in + unet_cond_dim) * self.patch_size ** 2, channels[max(0, skip_stages - 1)], 1) | |
self.proj_out = nn.Conv2d(channels[max(0, skip_stages - 1)], c_in * self.patch_size ** 2 + (1 if self.has_variance else 0), 1) | |
nn.init.zeros_(self.proj_out.weight) | |
nn.init.zeros_(self.proj_out.bias) | |
if cross_cond_dim == 0: | |
cross_attn_depths = [False] * len(self_attn_depths) | |
d_blocks, u_blocks = [], [] | |
for i in range(len(depths)): | |
my_c_in = channels[max(0, i - 1)] | |
d_blocks.append(DBlock(depths[i], feats_in, my_c_in, channels[i], channels[i], downsample=i > skip_stages, self_attn=self_attn_depths[i], cross_attn=cross_attn_depths[i], c_enc=cross_cond_dim, dropout_rate=dropout_rate)) | |
for i in range(len(depths)): | |
my_c_in = channels[i] * 2 if i < len(depths) - 1 else channels[i] | |
my_c_out = channels[max(0, i - 1)] | |
u_blocks.append(UBlock(depths[i], feats_in, my_c_in, channels[i], my_c_out, upsample=i > skip_stages, self_attn=self_attn_depths[i], cross_attn=cross_attn_depths[i], c_enc=cross_cond_dim, dropout_rate=dropout_rate)) | |
self.u_net = layers.UNet(d_blocks, reversed(u_blocks), skip_stages=skip_stages) | |
def param_groups(self, base_lr=2e-4): | |
wd_names = [] | |
for name, _ in self.named_parameters(): | |
if name.startswith("mapping") or name.startswith("u_net"): | |
if name.endswith(".weight"): | |
wd_names.append(name) | |
wd, no_wd = [], [] | |
for name, param in self.named_parameters(): | |
if name in wd_names: | |
wd.append(param) | |
else: | |
no_wd.append(param) | |
groups = [ | |
{"params": wd, "lr": base_lr}, | |
{"params": no_wd, "lr": base_lr, "weight_decay": 0.0}, | |
] | |
return groups | |
def forward(self, input, sigma, mapping_cond=None, unet_cond=None, cross_cond=None, cross_cond_padding=None, return_variance=False): | |
c_noise = sigma.log() / 4 | |
timestep_embed = self.timestep_embed(utils.append_dims(c_noise, 2)) | |
mapping_cond_embed = torch.zeros_like(timestep_embed) if mapping_cond is None else self.mapping_cond(mapping_cond) | |
mapping_out = self.mapping(timestep_embed + mapping_cond_embed) | |
cond = {'cond': mapping_out} | |
if unet_cond is not None: | |
input = torch.cat([input, unet_cond], dim=1) | |
if cross_cond is not None: | |
cond['cross'] = cross_cond | |
cond['cross_padding'] = cross_cond_padding | |
if self.patch_size > 1: | |
input = F.pixel_unshuffle(input, self.patch_size) | |
input = self.proj_in(input) | |
input = self.u_net(input, cond) | |
input = self.proj_out(input) | |
if self.has_variance: | |
input, logvar = input[:, :-1], input[:, -1].flatten(1).mean(1) | |
if self.patch_size > 1: | |
input = F.pixel_shuffle(input, self.patch_size) | |
if self.has_variance and return_variance: | |
return input, logvar | |
return input | |
def set_skip_stages(self, skip_stages): | |
self.proj_in = nn.Conv2d(self.proj_in.in_channels, self.channels[max(0, skip_stages - 1)], 1) | |
self.proj_out = nn.Conv2d(self.channels[max(0, skip_stages - 1)], self.proj_out.out_channels, 1) | |
nn.init.zeros_(self.proj_out.weight) | |
nn.init.zeros_(self.proj_out.bias) | |
self.u_net.skip_stages = skip_stages | |
for i, block in enumerate(self.u_net.d_blocks): | |
block.set_downsample(i > skip_stages) | |
for i, block in enumerate(reversed(self.u_net.u_blocks)): | |
block.set_upsample(i > skip_stages) | |
return self | |
def set_patch_size(self, patch_size): | |
self.patch_size = patch_size | |
self.proj_in = nn.Conv2d((self.c_in + self.unet_cond_dim) * self.patch_size ** 2, self.channels[max(0, self.u_net.skip_stages - 1)], 1) | |
self.proj_out = nn.Conv2d(self.channels[max(0, self.u_net.skip_stages - 1)], self.c_in * self.patch_size ** 2 + (1 if self.has_variance else 0), 1) | |
nn.init.zeros_(self.proj_out.weight) | |
nn.init.zeros_(self.proj_out.bias) | |