Spaces:
Runtime error
Runtime error
| """ | |
| credits: https://github.com/exx8/differential-diffusion | |
| code from: https://github.com/exx8/differential-diffusion/blob/main/SDXL/diff_pipe.py | |
| sdnext implementation follows after pipeline-end | |
| """ | |
| ### pipeline start | |
| import inspect | |
| import hashlib | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from packaging import version | |
| from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
| import torchvision | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.models.attention_processor import ( | |
| AttnProcessor2_0, | |
| LoRAAttnProcessor2_0, | |
| LoRAXFormersAttnProcessor, | |
| XFormersAttnProcessor, | |
| ) | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import ( | |
| PIL_INTERPOLATION, | |
| logging, | |
| deprecate, | |
| is_accelerate_available, | |
| is_accelerate_version, | |
| replace_example_docstring, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import StableDiffusionXLImg2ImgPipeline | |
| >>> from diffusers.utils import load_image | |
| >>> pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( | |
| ... "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe = pipe.to("cuda") | |
| >>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png" | |
| >>> init_image = load_image(url).convert("RGB") | |
| >>> prompt = "a photo of an astronaut riding a horse on mars" | |
| >>> image = pipe(prompt, image=init_image).images[0] | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| """ | |
| Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| class StableDiffusionXLDiffImg2ImgPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion XL. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| In addition the pipeline inherits the following loading methods: | |
| - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] | |
| - *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`] | |
| - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] | |
| as well as the following saving methods: | |
| - *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`] | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion XL uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| text_encoder_2 ([` CLIPTextModelWithProjection`]): | |
| Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
| specifically the | |
| [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | |
| variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`CLIPTokenizer`): | |
| Second Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| """ | |
| _optional_components = ["tokenizer", "text_encoder"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| requires_aesthetics_score: bool = False, | |
| force_zeros_for_empty_prompt: bool = True, | |
| add_watermarker: Optional[bool] = None, # pylint: disable=unused-argument | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| unet=unet, | |
| scheduler=scheduler, | |
| ) | |
| self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | |
| self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.watermark = None | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def enable_model_cpu_offload(self, gpu_id=0): # pylint: disable=arguments-differ | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| model_sequence = ( | |
| [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
| ) | |
| model_sequence.extend([self.unet, self.vae]) | |
| hook = None | |
| for cpu_offloaded_model in model_sequence: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook # pylint: disable=attribute-defined-outside-init | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: str, | |
| prompt_2: Optional[str] = None, | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[str] = None, | |
| negative_prompt_2: Optional[str] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in both text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
| self._lora_scale = lora_scale # pylint: disable=attribute-defined-outside-init | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # Define tokenizers and text encoders | |
| tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
| text_encoders = ( | |
| [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
| ) | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| prompt_embeds_list = [] | |
| prompts = [prompt, prompt_2] | |
| for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| # get unconditional embeddings for classifier free guidance | |
| zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt # pylint: disable=no-member | |
| if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
| elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt_2 = negative_prompt_2 or negative_prompt | |
| uncond_tokens: List[str] | |
| if prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt, negative_prompt_2] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = [negative_prompt, negative_prompt_2] | |
| negative_prompt_embeds_list = [] | |
| for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = tokenizer( | |
| negative_prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
| negative_prompt_embeds_list.append(negative_prompt_embeds) | |
| negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| if do_classifier_free_guidance: | |
| negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| strength, | |
| num_inference_steps, | |
| callback_steps, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ): | |
| if strength < 0 or strength > 1: | |
| raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
| if num_inference_steps is None: | |
| raise ValueError("`num_inference_steps` cannot be None.") | |
| elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: | |
| raise ValueError( | |
| f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type" | |
| f" {type(num_inference_steps)}." | |
| ) | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): # pylint: disable=unused-argument | |
| # get the original timestep using init_timestep | |
| if denoising_start is None: | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| else: | |
| t_start = 0 | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| # Strength is irrelevant if we directly request a timestep to start at; | |
| # that is, strength is determined by the denoising_start instead. | |
| if denoising_start is not None: | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (denoising_start * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| timesteps = list(filter(lambda ts: ts < discrete_timestep_cutoff, timesteps)) | |
| return torch.tensor(timesteps), len(timesteps) | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_latents( | |
| self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True | |
| ): | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| # Offload text encoder if `enable_model_cpu_offload` was enabled | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.text_encoder_2.to("cpu") | |
| torch.cuda.empty_cache() | |
| image = image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_images_per_prompt | |
| if image.shape[1] == 4: | |
| init_latents = image | |
| else: | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| if self.vae.config.force_upcast: | |
| image = image.float() | |
| self.vae.to(dtype=torch.float32) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| elif isinstance(generator, list): | |
| init_latents = [ | |
| self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
| if self.vae.config.force_upcast: | |
| self.vae.to(dtype) | |
| init_latents = init_latents.to(dtype) | |
| init_latents = self.vae.config.scaling_factor * init_latents | |
| if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // init_latents.shape[0] | |
| init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| init_latents = torch.cat([init_latents], dim=0) | |
| if add_noise: | |
| shape = init_latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # get latents | |
| init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
| latents = init_latents | |
| return latents | |
| def _get_add_time_ids( | |
| self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, dtype | |
| ): | |
| if self.config.requires_aesthetics_score: # pylint: disable=no-member | |
| add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) | |
| add_neg_time_ids = list(original_size + crops_coords_top_left + (negative_aesthetic_score,)) | |
| else: | |
| add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| add_neg_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| passed_add_embed_dim = ( | |
| self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim | |
| ) | |
| expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
| if ( | |
| expected_add_embed_dim > passed_add_embed_dim | |
| and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim | |
| ): | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model." | |
| ) | |
| elif ( | |
| expected_add_embed_dim < passed_add_embed_dim | |
| and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim | |
| ): | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model." | |
| ) | |
| elif expected_add_embed_dim != passed_add_embed_dim: | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
| ) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
| add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) | |
| return add_time_ids, add_neg_time_ids | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae | |
| def upcast_vae(self): | |
| dtype = self.vae.dtype | |
| self.vae.to(dtype=torch.float32) | |
| use_torch_2_0_or_xformers = isinstance( | |
| self.vae.decoder.mid_block.attentions[0].processor, | |
| ( | |
| AttnProcessor2_0, | |
| XFormersAttnProcessor, | |
| LoRAXFormersAttnProcessor, | |
| LoRAAttnProcessor2_0, | |
| ), | |
| ) | |
| # if xformers or torch_2_0 is used attention block does not need | |
| # to be in float32 which can save lots of memory | |
| if use_torch_2_0_or_xformers: | |
| self.vae.post_quant_conv.to(dtype) | |
| self.vae.decoder.conv_in.to(dtype) | |
| self.vae.decoder.mid_block.to(dtype) | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| image: Union[ | |
| torch.FloatTensor, | |
| PIL.Image.Image, | |
| np.ndarray, | |
| List[torch.FloatTensor], | |
| List[PIL.Image.Image], | |
| List[np.ndarray], | |
| ] = None, | |
| strength: float = 0.3, | |
| num_inference_steps: int = 50, | |
| denoising_start: Optional[float] = None, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| original_size: Tuple[int, int] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Tuple[int, int] = None, | |
| aesthetic_score: float = 6.0, | |
| negative_aesthetic_score: float = 2.5, | |
| map: torch.FloatTensor = None, # pylint: disable=redefined-builtin | |
| original_image: Union[ | |
| torch.FloatTensor, | |
| PIL.Image.Image, | |
| np.ndarray, | |
| List[torch.FloatTensor], | |
| List[PIL.Image.Image], | |
| List[np.ndarray], | |
| ] = None, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in both text-encoders | |
| image (`torch.FloatTensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`): | |
| The image(s) to modify with the pipeline. | |
| strength (`float`, *optional*, defaults to 0.3): | |
| Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` | |
| will be used as a starting point, adding more noise to it the larger the `strength`. The number of | |
| denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will | |
| be maximum and the denoising process will run for the full number of iterations specified in | |
| `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of | |
| `denoising_start` being declared as an integer, the value of `strength` will be ignored. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| denoising_start (`float`, *optional*): | |
| When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be | |
| bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and | |
| it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, | |
| strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline | |
| is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image | |
| Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output). | |
| denoising_end (`float`, *optional*): | |
| When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
| completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
| still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be | |
| denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the | |
| final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline | |
| forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
| Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output). | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
| guidance_rescale (`float`, *optional*, defaults to 0.7): | |
| Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `ฯ` in equation 16. of | |
| [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
| Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
| original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
| `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as | |
| explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
| `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
| `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
| `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
| not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in | |
| section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| aesthetic_score (`float`, *optional*, defaults to 6.0): | |
| Used to simulate an aesthetic score of the generated image by influencing the positive text condition. | |
| Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| negative_aesthetic_score (`float`, *optional*, defaults to 2.5): | |
| Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to | |
| simulate an aesthetic score of the generated image by influencing the negative text condition. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
| `tuple. When returning a tuple, the first element is a list with the generated images. | |
| """ | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| strength, | |
| num_inference_steps, | |
| callback_steps, | |
| negative_prompt, | |
| negative_prompt_2, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| ) | |
| # 4. Preprocess image | |
| #image = self.image_processor.preprocess(image) #ideally we would have preprocess the image with diffusers, but for this POC we won't --- it throws a deprecated warning | |
| map = torchvision.transforms.Resize(tuple(s // self.vae_scale_factor for s in original_image.shape[2:]),antialias=None)(map) | |
| # 5. Prepare timesteps | |
| def denoising_value_valid(dnv): | |
| return type(denoising_end) == float and 0 < dnv < 1 | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| #begin diff diff change | |
| total_time_steps = num_inference_steps | |
| #end diff diff change | |
| timesteps, num_inference_steps = self.get_timesteps( | |
| num_inference_steps, strength, device, denoising_start=denoising_start if denoising_value_valid else None # pylint: disable=missing-parentheses-for-call-in-test, using-constant-test | |
| ) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| add_noise = True if denoising_start is None else False | |
| # 6. Prepare latent variables | |
| latents = self.prepare_latents( | |
| image, | |
| latent_timestep, | |
| batch_size, | |
| num_images_per_prompt, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| add_noise, | |
| ) | |
| # 7. Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| height, width = latents.shape[-2:] | |
| height = height * self.vae_scale_factor | |
| width = width * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| # 8. Prepare added time ids & embeddings | |
| add_text_embeds = pooled_prompt_embeds | |
| add_time_ids, add_neg_time_ids = self._get_add_time_ids( | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| aesthetic_score, | |
| negative_aesthetic_score, | |
| dtype=prompt_embeds.dtype, | |
| ) | |
| add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
| add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
| add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device) | |
| # 9. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| # 9.1 Apply denoising_end | |
| if ( | |
| denoising_end is not None | |
| and denoising_start is not None | |
| and denoising_value_valid(denoising_end) | |
| and denoising_value_valid(denoising_start) | |
| and denoising_start >= denoising_end | |
| ): | |
| raise ValueError( | |
| f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: " | |
| + f" {denoising_end} when using type float." | |
| ) | |
| elif denoising_end is not None and denoising_value_valid(denoising_end): | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (denoising_end * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
| timesteps = timesteps[:num_inference_steps] | |
| # prepartions for diff diff | |
| original_with_noise = self.prepare_latents( | |
| original_image, timesteps, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator | |
| ) | |
| thresholds = torch.arange(total_time_steps, dtype=map.dtype) / total_time_steps | |
| thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device) | |
| masks = map > (thresholds + (denoising_start or 0)) | |
| # end diff diff preparations | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # diff diff | |
| if i==0 and denoising_start is None: | |
| latents = original_with_noise[:1] | |
| else: | |
| mask = masks[i].unsqueeze(0) | |
| # cast mask to the same type as latents etc | |
| mask = mask.to(latents.dtype) | |
| mask = mask.unsqueeze(1) # fit shape | |
| latents = original_with_noise[i] * mask + latents * (1 - mask) | |
| # end diff diff | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| if output_type != "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| else: | |
| image = latents | |
| return StableDiffusionXLPipelineOutput(images=image) | |
| # apply watermark if available | |
| if self.watermark is not None: | |
| image = self.watermark.apply_watermark(image) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image,) | |
| return StableDiffusionXLPipelineOutput(images=image) | |
| class StableDiffusionDiffImg2ImgPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-guided image to image generation using Stable Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
| feature_extractor ([`CLIPFeatureExtractor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| _optional_components = ["safety_checker", "feature_extractor"] | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.__init__ | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPFeatureExtractor, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__() | |
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file" | |
| ) | |
| deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["clip_sample"] = False | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
| version.parse(unet.config._diffusers_version).base_version | |
| ) < version.parse("0.9.0.dev0") | |
| is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
| if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
| deprecation_message = ( | |
| "The configuration file of the unet has set the default `sample_size` to smaller than" | |
| " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
| " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
| " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
| " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
| " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
| " in the config might lead to incorrect results in future versions. If you have downloaded this" | |
| " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
| " the `unet/config.json` file" | |
| ) | |
| deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(unet.config) | |
| new_config["sample_size"] = 64 | |
| unet._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload | |
| def enable_sequential_cpu_offload(self, gpu_id=0): # pylint: disable=arguments-differ | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
| text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
| `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
| Note that offloading happens on a submodule basis. Memory savings are higher than with | |
| `enable_model_cpu_offload`, but performance is lower. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| cpu_offload(cpu_offloaded_model, device) | |
| if self.safety_checker is not None: | |
| cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_model_cpu_offload | |
| def enable_model_cpu_offload(self, gpu_id=0): # pylint: disable=arguments-differ | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| hook = None | |
| for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| if self.safety_checker is not None: | |
| _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook # pylint: disable=attribute-defined-outside-init | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") # pylint: disable=protected-access | |
| and module._hf_hook.execution_device is not None # pylint: disable=protected-access | |
| ): | |
| return torch.device(module._hf_hook.execution_device) # pylint: disable=protected-access | |
| return self.device | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| """ | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is not None: | |
| safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| else: | |
| has_nsfw_concept = None | |
| return image, has_nsfw_concept | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
| def decode_latents(self, latents): | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None | |
| ): | |
| if strength < 0 or strength > 1: | |
| raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| def get_timesteps(self, num_inference_steps, strength, device): # pylint: disable=unused-argument | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start:] | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| image = image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_images_per_prompt | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if isinstance(generator, list): | |
| init_latents = [ | |
| self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
| init_latents = self.vae.config.scaling_factor * init_latents | |
| if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| deprecation_message = ( | |
| f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" | |
| " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
| " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
| " your script to pass as many initial images as text prompts to suppress this warning." | |
| ) | |
| deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
| additional_image_per_prompt = batch_size // init_latents.shape[0] | |
| init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| init_latents = torch.cat([init_latents], dim=0) | |
| shape = init_latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # get latents | |
| init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
| latents = init_latents | |
| return latents | |
| def encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| lora_scale: Optional[float] = None, # pylint: disable=unused-argument | |
| clip_skip: Optional[int] = None, | |
| ): | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| if clip_skip is None: | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
| prompt_embeds = prompt_embeds[0] | |
| else: | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
| ) | |
| # Access the `hidden_states` first, that contains a tuple of | |
| # all the hidden states from the encoder layers. Then index into | |
| # the tuple to access the hidden states from the desired layer. | |
| prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
| # We also need to apply the final LayerNorm here to not mess with the | |
| # representations. The `last_hidden_states` that we typically use for | |
| # obtaining the final prompt representations passes through the LayerNorm | |
| # layer. | |
| prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
| if self.text_encoder is not None: | |
| prompt_embeds_dtype = self.text_encoder.dtype | |
| elif self.unet is not None: | |
| prompt_embeds_dtype = self.unet.dtype | |
| else: | |
| prompt_embeds_dtype = prompt_embeds.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds, negative_prompt_embeds | |
| def preprocess(self, image): | |
| if isinstance(image, torch.Tensor): | |
| return image | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| w, h = image[0].size | |
| w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8 # noqa: C417 | |
| image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = 2.0 * image - 1.0 | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, dim=0) | |
| return image | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
| strength: float = 1, | |
| num_inference_steps: Optional[int] = 50, | |
| guidance_scale: Optional[float] = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| map:torch.FloatTensor = None, # pylint: disable=redefined-builtin | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| image (`torch.FloatTensor` or `PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch, that will be used as the starting point for the | |
| process. | |
| strength (`float`, *optional*, defaults to 1): | |
| Repealed in favor of the map. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. This parameter will be modulated by `strength`. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` | |
| is less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ) | |
| # 4. Preprocess image | |
| # image = self.preprocess(image) | |
| # 5. set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| map = torchvision.transforms.Resize(tuple(s // self.vae_scale_factor for s in image.shape[2:]),antialias=None)(map) | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| # prepartions | |
| original_with_noise = self.prepare_latents( | |
| image, timesteps, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator | |
| ) | |
| thresholds = torch.arange(len(timesteps), dtype=map.dtype) / len(timesteps) | |
| thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device) | |
| masks = map > thresholds | |
| # end diff diff preparations | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # diff diff | |
| if i == 0: | |
| latents = original_with_noise[:1] | |
| else: | |
| mask = masks[i].unsqueeze(0) | |
| # cast mask to the same type as latents etc | |
| mask = mask.to(latents.dtype) | |
| mask = mask.unsqueeze(1) # fit shape | |
| latents = original_with_noise[i] * mask + latents * (1 - mask) | |
| # end diff diff | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # 9. Post-processing | |
| # image = self.decode_latents(latents) | |
| # 10. Run safety checker | |
| # image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| #has_nsfw_concept = False | |
| # 11. Convert to PIL | |
| # if output_type == "pil": | |
| # image = self.numpy_to_pil(image) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| # if not return_dict: | |
| # return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=latents, nsfw_content_detected=False) | |
| ### pipeline end | |
| ### script start | |
| import gradio as gr | |
| import diffusers | |
| from PIL import Image, ImageEnhance, ImageOps # pylint: disable=reimported | |
| from torchvision import transforms | |
| from modules import errors, shared, devices, scripts, processing, sd_models, images | |
| detector = None | |
| MODELS = { | |
| 'DPT Tiny': 'Intel/dpt-swinv2-tiny-256', | |
| 'DPT Hybrid': 'Intel/dpt-hybrid-midas', | |
| 'DPT Large': 'Intel/dpt-large' | |
| } | |
| class Script(scripts.Script): | |
| def title(self): | |
| return 'Differential diffusion' | |
| def show(self, is_img2img): | |
| return is_img2img if shared.backend == shared.Backend.DIFFUSERS else False | |
| def ui(self, _is_img2img): | |
| with gr.Row(): | |
| gr.HTML('<a href="https://github.com/exx8/differential-diffusion">  Differential diffusion</a><br><span>Select a model for auto-preprocess or upload an image map</span><br>') | |
| with gr.Row(): | |
| enabled = gr.Checkbox(label='Enabled', value=True) | |
| invert = gr.Checkbox(label='Mask invert', value=False) | |
| strength = gr.Slider(minimum=0.0, maximum=2.0, value=1.0, label='Mask strength') | |
| model = gr.Dropdown(label='Model', choices=['None', 'DPT Tiny', 'DPT Hybrid', 'DPT Large'], value='None') | |
| with gr.Row(): | |
| image = gr.Image(label="Image map", show_label=False, type="pil", source="upload", interactive=True, tool="editor", visible=True, image_mode='RGB') | |
| return enabled, strength, invert, model, image | |
| def depthmap(self, image_init: Image.Image, image_map: Image.Image, model: str, strength: float, invert: bool): | |
| global detector # pylint: disable=global-statement | |
| from modules.control.proc.dpt import DPTDetector | |
| if image_init is None: | |
| return None, None, None | |
| if image_map is not None: | |
| image_map = image_map.resize(image_init.size, Image.Resampling.LANCZOS) | |
| if model != 'None': | |
| if detector is None: | |
| detector = DPTDetector() | |
| image_map = detector(image_init, MODELS[model]) | |
| if image_map is not None: | |
| if strength != 1.0: | |
| enhancer = ImageEnhance.Brightness(image_map) | |
| image_map = enhancer.enhance(strength) | |
| image_map = image_map.convert('L') | |
| if invert: | |
| image_map = ImageOps.invert(image_map) | |
| if shared.opts.save_init_img: | |
| init_img_hash = hashlib.sha256(image_map.tobytes()).hexdigest()[0:8] # pylint: disable=attribute-defined-outside-init | |
| images.save_image(image_map, path=shared.opts.outdir_init_images, basename=None, forced_filename=init_img_hash, suffix="-init-image") | |
| else: | |
| return None, None, None | |
| image_mask = image_map.copy() | |
| image_map = transforms.ToTensor()(image_map) | |
| image_map = image_map.to(devices.device) | |
| image_init = 2 * transforms.ToTensor()(image_init) - 1 | |
| image_init = image_init.unsqueeze(0) | |
| image_init = image_init.to(devices.device) | |
| return image_init, image_map, image_mask | |
| def run(self, p: processing.StableDiffusionProcessingImg2Img, enabled, strength, invert, model, image): # pylint: disable=arguments-differ | |
| if not enabled: | |
| return | |
| if shared.sd_model_type != 'sdxl' and shared.sd_model_type != 'sd': | |
| shared.log.error(f'Differential-diffusion: incorrect base model: {shared.sd_model.__class__.__name__}') | |
| return | |
| if not hasattr(p, 'init_images') or len(p.init_images) == 0: | |
| shared.log.error('Differential-diffusion: no input images') | |
| return | |
| image_init, image_map, image_mask = self.depthmap(p.init_images[0], image, model, strength, invert) | |
| if image_map is None: | |
| shared.log.error('Differential-diffusion: no image map') | |
| return | |
| orig_pipeline = shared.sd_model | |
| pipe = None | |
| try: | |
| diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["StableDiffusionXLDiffImg2ImgPipeline"] = StableDiffusionXLDiffImg2ImgPipeline | |
| diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["StableDiffusionDiffImg2ImgPipeline"] = StableDiffusionDiffImg2ImgPipeline | |
| if shared.sd_model_type == 'sdxl': | |
| pipe = StableDiffusionXLDiffImg2ImgPipeline( | |
| text_encoder=shared.sd_model.text_encoder, | |
| text_encoder_2=shared.sd_model.text_encoder_2, | |
| tokenizer=shared.sd_model.tokenizer, | |
| tokenizer_2=shared.sd_model.tokenizer_2, | |
| unet=shared.sd_model.unet, | |
| vae=shared.sd_model.vae, | |
| scheduler=shared.sd_model.scheduler, | |
| ) | |
| elif shared.sd_model_type == 'sd': | |
| pipe = StableDiffusionDiffImg2ImgPipeline( | |
| text_encoder=shared.sd_model.text_encoder, | |
| tokenizer=shared.sd_model.tokenizer, | |
| unet=shared.sd_model.unet, | |
| vae=shared.sd_model.vae, | |
| scheduler=shared.sd_model.scheduler, | |
| feature_extractor=getattr(shared.sd_model, 'feature_extractor', None), | |
| safety_checker=None, | |
| requires_safety_checker=False, | |
| ) | |
| sd_models.copy_diffuser_options(pipe, shared.sd_model) | |
| sd_models.set_diffuser_options(pipe) | |
| p.task_args['image'] = image_init | |
| p.task_args['map'] = image_map | |
| if shared.sd_model_type == 'sdxl': | |
| p.task_args['original_image'] = image_init | |
| shared.log.debug(f'Differential-diffusion: pipeline={pipe.__class__.__name__} strength={strength} model={model} auto={image is None}') | |
| shared.sd_model = pipe | |
| sd_models.move_model(pipe.vae, devices.device, force=True) | |
| except Exception as e: | |
| shared.log.error(f'Differential-diffusion: pipeline creation failed: {e}') | |
| errors.display(e, 'Differential-diffusion: pipeline creation failed') | |
| shared.sd_model = orig_pipeline | |
| # run pipeline | |
| processed: processing.Processed = processing.process_images(p) # runs processing using main loop | |
| if shared.opts.include_mask: | |
| if image_mask is not None and isinstance(image_mask, Image.Image): | |
| processed.images.append(image_mask) | |
| # restore pipeline and params | |
| pipe = None | |
| shared.sd_model = orig_pipeline | |
| devices.torch_gc() | |
| return processed | |