import torch from ldm.models.diffusion.ddim import DDIMSampler from ldm.modules.diffusionmodules.util import noise_like import modules.devices as devices @devices.inference_context() def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None): b, *_, device = *x.shape, x.device if unconditional_conditioning is None or unconditional_guidance_scale == 1.: model_output = self.model.apply_model(x, t, c) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) if isinstance(c, dict): assert isinstance(unconditional_conditioning, dict) c_in = dict() for k in c: if isinstance(c[k], list): c_in[k] = [torch.cat([ unconditional_conditioning[k][i], c[k][i]]) for i in range(len(c[k]))] else: c_in[k] = torch.cat([ unconditional_conditioning[k], c[k]]) elif isinstance(c, list): c_in = list() assert isinstance(unconditional_conditioning, list) for i in range(len(c)): c_in.append(torch.cat([unconditional_conditioning[i], c[i]])) else: c_in = torch.cat([unconditional_conditioning, c]) model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond) if self.model.parameterization == "v": e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) else: e_t = model_output if score_corrector is not None: assert self.model.parameterization == "eps", 'not implemented' e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas # select parameters corresponding to the currently considered timestep alphas[index].__str__() # DML Solution: DDIM Sampling does not work without this 'stringify'. a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 if self.model.parameterization != "v": pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() else: pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) if dynamic_threshold is not None: raise NotImplementedError() # direction pointing to x_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 DDIMSampler.p_sample_ddim = p_sample_ddim