add audio MAE
Browse files- __pycache__/app.cpython-311.pyc +0 -0
 - __pycache__/classpred.cpython-311.pyc +0 -0
 - app.py +4 -2
 - classpred.py +44 -0
 
    	
        __pycache__/app.cpython-311.pyc
    CHANGED
    
    | 
         Binary files a/__pycache__/app.cpython-311.pyc and b/__pycache__/app.cpython-311.pyc differ 
     | 
| 
         | 
    	
        __pycache__/classpred.cpython-311.pyc
    ADDED
    
    | 
         Binary file (3.47 kB). View file 
     | 
| 
         | 
    	
        app.py
    CHANGED
    
    | 
         @@ -9,7 +9,9 @@ from model import BirdAST 
     | 
|
| 9 | 
         
             
            import torch
         
     | 
| 10 | 
         
             
            import librosa
         
     | 
| 11 | 
         
             
            import noisereduce as nr
         
     | 
| 
         | 
|
| 12 | 
         
             
            import pandas as pd
         
     | 
| 
         | 
|
| 13 | 
         
             
            import torch.nn.functional as F
         
     | 
| 14 | 
         
             
            import random
         
     | 
| 15 | 
         
             
            from torchaudio.compliance import kaldi
         
     | 
| 
         @@ -56,7 +58,7 @@ def predict(audio, start, end): 
     | 
|
| 56 | 
         
             
                sr, x = audio
         
     | 
| 57 | 
         | 
| 58 | 
         
             
                x = np.array(x, dtype=np.float32)/32768.0
         
     | 
| 59 | 
         
            -
                x = x[start*sr : end*sr]
         
     | 
| 60 | 
         
             
                res = preprocess_for_inference(x, sr)
         
     | 
| 61 | 
         | 
| 62 | 
         
             
                if start >= end:
         
     | 
| 
         @@ -72,7 +74,7 @@ def predict(audio, start, end): 
     | 
|
| 72 | 
         
             
                fig2 = plot_wave(sr, x)
         
     | 
| 73 | 
         | 
| 74 | 
         | 
| 75 | 
         
            -
                return  
     | 
| 76 | 
         | 
| 77 | 
         
             
            def download_model(url, model_path):
         
     | 
| 78 | 
         
             
                if not os.path.exists(model_path):
         
     | 
| 
         | 
|
| 9 | 
         
             
            import torch
         
     | 
| 10 | 
         
             
            import librosa
         
     | 
| 11 | 
         
             
            import noisereduce as nr
         
     | 
| 12 | 
         
            +
            import timm
         
     | 
| 13 | 
         
             
            import pandas as pd
         
     | 
| 14 | 
         
            +
            from classpred import predict_class
         
     | 
| 15 | 
         
             
            import torch.nn.functional as F
         
     | 
| 16 | 
         
             
            import random
         
     | 
| 17 | 
         
             
            from torchaudio.compliance import kaldi
         
     | 
| 
         | 
|
| 58 | 
         
             
                sr, x = audio
         
     | 
| 59 | 
         | 
| 60 | 
         
             
                x = np.array(x, dtype=np.float32)/32768.0
         
     | 
| 61 | 
         
            +
                x = x[int(start*sr) : int(end*sr)]
         
     | 
| 62 | 
         
             
                res = preprocess_for_inference(x, sr)
         
     | 
| 63 | 
         | 
| 64 | 
         
             
                if start >= end:
         
     | 
| 
         | 
|
| 74 | 
         
             
                fig2 = plot_wave(sr, x)
         
     | 
| 75 | 
         | 
| 76 | 
         | 
| 77 | 
         
            +
                return predict_class(x, sr, start, end), res, fig1, fig2
         
     | 
| 78 | 
         | 
| 79 | 
         
             
            def download_model(url, model_path):
         
     | 
| 80 | 
         
             
                if not os.path.exists(model_path):
         
     | 
    	
        classpred.py
    ADDED
    
    | 
         @@ -0,0 +1,44 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import timm
         
     | 
| 2 | 
         
            +
            import json
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            from torchaudio.functional import resample
         
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
            from torchaudio.compliance import kaldi
         
     | 
| 7 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 8 | 
         
            +
            import requests 
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            TAG = "gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k"
         
     | 
| 11 | 
         
            +
            MODEL = timm.create_model(f"hf_hub:{TAG}", pretrained=True).eval()
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            LABEL_URL = "https://huggingface.co/datasets/huggingface/label-files/raw/main/audioset-id2label.json"
         
     | 
| 14 | 
         
            +
            AUDIOSET_LABELS = list(json.loads(requests.get(LABEL_URL).content).values())
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            SAMPLING_RATE = 16_000
         
     | 
| 17 | 
         
            +
            MEAN = -4.2677393
         
     | 
| 18 | 
         
            +
            STD = 4.5689974
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            def preprocess(x: torch.Tensor):
         
     | 
| 21 | 
         
            +
                x = x - x.mean()
         
     | 
| 22 | 
         
            +
                melspec = kaldi.fbank(x.unsqueeze(0), htk_compat=True, window_type="hanning", num_mel_bins=128)
         
     | 
| 23 | 
         
            +
                if melspec.shape[0] < 1024:
         
     | 
| 24 | 
         
            +
                    melspec = F.pad(melspec, (0, 0, 0, 1024 - melspec.shape[0]))
         
     | 
| 25 | 
         
            +
                else:
         
     | 
| 26 | 
         
            +
                    melspec = melspec[:1024]
         
     | 
| 27 | 
         
            +
                melspec = (melspec - MEAN) / (STD * 2)
         
     | 
| 28 | 
         
            +
                return melspec
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            def predict_class(x, sr, start, end):
         
     | 
| 31 | 
         
            +
                x = torch.from_numpy(x) / (1 << 15)
         
     | 
| 32 | 
         
            +
                if x.ndim > 1:
         
     | 
| 33 | 
         
            +
                    x = x.mean(-1)
         
     | 
| 34 | 
         
            +
                assert x.ndim == 1
         
     | 
| 35 | 
         
            +
                x = resample(x[int(start * sr) : int(end * sr)], sr, SAMPLING_RATE)
         
     | 
| 36 | 
         
            +
                x = preprocess(x)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                with torch.inference_mode():
         
     | 
| 39 | 
         
            +
                    logits = MODEL(x.view(1, 1, 1024, 128)).squeeze(0)
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                topk_probs, topk_classes = logits.sigmoid().topk(10)
         
     | 
| 42 | 
         
            +
                preds = [[AUDIOSET_LABELS[cls], prob.item() * 100] for cls, prob in zip(topk_classes, topk_probs)]
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                return preds
         
     |