File size: 6,127 Bytes
bab4c4d 06be75b cb481ca bab4c4d cb481ca bab4c4d 06be75b cb481ca bab4c4d cb481ca bab4c4d cb481ca bab4c4d cb481ca 9b6b77c cb481ca bab4c4d cb481ca a7a7735 cb481ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
---
title: ReTool Implementation
emoji: π§
colorFrom: blue
colorTo: purple
sdk: static
app_file: README.md
pinned: false
license: mit
tags:
- reinforcement-learning
- tool-use
- code-interpreter
- mathematical-reasoning
- rl-training
- ppo
- research-implementation
language: en
library_name: transformers
---
# ReTool: Reinforcement Learning for Strategic Tool Use in LLMs
A PyTorch implementation of **ReTool** from the paper ["ReTool: Reinforcement Learning for Strategic Tool Use in LLMs"](https://arxiv.org/abs/2504.11536) by Feng et al. (2025).
ReTool enhances long-form reasoning by integrating code interpreter execution into the RL training loop, enabling models to learn when and how to invoke computational tools for mathematical problem solving.
<div align="center">
<img src="assets/retool_rollout_process.png" alt="ReTool Rollout Process" width="80%">
<p><em>Figure 2: Comparison of standard text-based RL vs ReTool's code-integrated training process</em></p>
</div>
## π Key Features
- **Multi-turn Generation**: Dynamic code execution during reasoning with KV-cache optimization
- **Strategic Tool Use**: Learns when and how to invoke code interpreters through RL
- **Interpreter Masking**: Excludes external tool outputs from gradient computation
- **Production Ready**: Built on HuggingFace Transformers with proper batching and distributed training support
## π Performance
<div align="center">
<img src="assets/aime_results.png" alt="AIME Results" width="70%">
<p><em>Figure 1: ReTool achieves 67% accuracy on AIME 2024, significantly outperforming text-based RL (40%)</em></p>
</div>
## π οΈ Installation
```bash
git clone https://github.com/yourusername/retool-implementation.git
cd retool-implementation/scr
pip install -r requirements.txt
```
## π§ Current Status
**This is a research implementation based on the ReTool paper.** The core components are implemented but not yet fully tested.
### What's Implemented β
- Multi-turn generation with KV-cache optimization
- Interpreter token masking for RL training
- Modified PPO loss computation
- Complete training pipeline structure
- Proper tensor handling and batching
### What Needs Testing/Integration π§
- End-to-end training verification
- Code execution sandbox integration
- Edge case handling for truncated sequences
- Memory optimization for large models
### For Researchers & Developers
This implementation serves as a foundation for:
- Understanding ReTool's architecture
- Building upon the multi-turn generation approach
- Integrating custom code execution environments
- Extending to other tool-use scenarios
## π Dataset Format
Your dataset should contain dictionaries with:
```python
{
"prompt": "Solve this math problem: ...",
"answer": "42" # Ground truth for reward computation
}
```
## π How It Works
1. **Multi-turn Generation**: Model generates reasoning step-by-step
2. **Code Detection**: When `</code>` is generated, extract and execute code
3. **Tool Integration**: Append `<interpreter>result</interpreter>` to context
4. **Continued Reasoning**: Model continues with tool feedback
5. **Reward Computation**: Binary reward based on final answer correctness
6. **RL Training**: PPO updates exclude interpreter tokens from loss
## βοΈ Key Components
### ReToolTrainer Class
- `_retool_generate_with_interpreter()`: Multi-turn generation with tool execution
- `_create_interpreter_mask()`: Creates masks for excluding tool outputs
- `_compute_loss()`: Modified PPO loss with interpreter masking
- `_compute_rewards_and_advantages()`: Binary reward computation
### Configuration Options
```python
trainer = ReToolTrainer(
# ... model and data ...
max_turns=10, # Maximum reasoning turns
temperature=0.7, # Generation temperature
max_completion_length=1024, # Max tokens per turn
mask_truncated_completions=True, # Handle incomplete sequences
)
```
## π‘ Usage Example (Conceptual)
```python
from retool_trainer import ReToolTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
# This shows the intended API - full testing in progress
trainer = ReToolTrainer(
model=AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-32B-Instruct"),
processing_class=AutoTokenizer.from_pretrained("Qwen/Qwen2.5-32B-Instruct"),
args=TrainingArguments(...),
train_dataset=your_math_dataset,
max_turns=10,
)
# trainer.train() # Full integration testing in progress
```
## π Results From Paper
- **AIME 2024**: 67% accuracy (vs 40% text-based RL)
- **AIME 2025**: 49.3% accuracy (vs 36.7% text-based RL)
- **Efficiency**: Converges in 400 steps vs 1080 for baseline
- **Token Efficiency**: 40% reduction in response length
## π§ Limitations & TODOs
- [ ] Code execution sandbox integration
- [ ] Support for multiple reward functions
- [ ] Advanced error handling for malformed code
- [ ] Distributed training optimizations
- [ ] Tool selection beyond code interpreter
- [ ] [June 2, 2025 update] Add DAPO trainer
## π Citation
```bibtex
@article{feng2025retool,
title={ReTool: Reinforcement Learning for Strategic Tool Use in LLMs},
author={Feng, Jiazhan and Huang, Shijue and Qu, Xingwei and Zhang, Ge and Qin, Yujia and Zhong, Baoquan and Jiang, Chengquan and Chi, Jinxin and Zhong, Wanjun},
journal={arXiv preprint arXiv:2504.11536},
year={2025}
}
```
## π License
MIT License - see [LICENSE](LICENSE) file for details.
**π€ Collaboration welcome:**
Looking for teammates with complementary skills:
- **Systems engineers**: Distributed sandbox architecture with load balancing
- **Compute sponsors**: Academic institutions or cloud providers for training runs
- **Experimenters**: End-to-end validation and benchmarking on mathematical reasoning tasks
## π Acknowledgments
- Original paper authors for the ReTool framework
- HuggingFace team for the transformers library
- TRL team for GRPO implementation patterns
---
<div align="center">
<strong>Built with β€οΈ for advancing AI reasoning capabilities</strong>
</div>
|