import profiling_decorator import copy import inspect import os import re import textwrap import warnings from collections import defaultdict, deque from collections.abc import Sequence, Sized from contextlib import nullcontext from functools import partial from pathlib import Path from typing import Any, Callable, Optional, Union import datasets import torch import torch.utils.data import transformers #from accelerate.utils import broadcast_object_list, gather, gather_object, is_peft_model, set_seed from datasets import Dataset, IterableDataset from packaging import version from torch import nn from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.utils.data import DataLoader, Sampler from transformers import ( AutoConfig, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, GenerationConfig, PreTrainedModel, PreTrainedTokenizerBase, Trainer, TrainerCallback, is_wandb_available, PreTrainedTokenizer, ) from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache class HFRepeatSampler(Sampler): """ Sampler that repeats the indices of a dataset in a structured manner. Args: data_source (`Sized`): Dataset to sample from. mini_repeat_count (`int`): Number of times to repeat each index per batch. batch_size (`int`, *optional*, defaults to `1`): Number of unique indices per batch. repeat_count (`int`, *optional*, defaults to `1`): Number of times to repeat the full sampling process. shuffle (`bool`, *optional*, defaults to `True`): Whether to shuffle the dataset. seed (`int` or `None`, *optional*, defaults to `None`): Random seed for reproducibility (only affects this sampler). Example: ```python >>> sampler = RepeatSampler( ... ["a", "b", "c", "d", "e", "f", "g"], mini_repeat_count=2, batch_size=3, repeat_count=4 ... ) >>> list(sampler) [4, 4, 3, 3, 0, 0, 4, 4, 3, 3, 0, 0, 4, 4, 3, 3, 0, 0, 4, 4, 3, 3, 0, 0, 1, 1, 2, 2, 6, 6, 1, 1, 2, 2, 6, 6, 1, 1, 2, 2, 6, 6, 1, 1, 2, 2, 6, 6] ``` ```txt mini_repeat_count = 3 - - - [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, | 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, | 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, | repeat_count = 2 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, | 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, | 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, ...] | --------- --------- --------- --------- --------- --------- --------- --------- --------- --------- --------- --------- batch_size = 12 ``` """ def __init__( self, data_source: Sized, mini_repeat_count: int, batch_size: int = 1, repeat_count: int = 1, shuffle: bool = True, seed: Optional[int] = None, ): self.data_source = data_source self.mini_repeat_count = mini_repeat_count self.batch_size = batch_size self.repeat_count = repeat_count self.num_samples = len(data_source) self.shuffle = shuffle self.seed = seed if shuffle: self.generator = torch.Generator() # Create a local random generator if seed is not None: self.generator.manual_seed(seed) def __iter__(self): if self.shuffle: # E.g., [2, 4, 3, 1, 0, 6, 5] (num_samples = 7) indexes = torch.randperm(self.num_samples, generator=self.generator).tolist() else: indexes = list(range(self.num_samples)) # [2, 4, 3, 1, 0, 6, 5] # -> [[2, 4, 3], [1, 0, 6], [5]] (batch_size = 3) indexes = [indexes[i : i + self.batch_size] for i in range(0, len(indexes), self.batch_size)] # [[2, 4, 3], [1, 0, 6], [5]] # -> [[2, 4, 3], [1, 0, 6]] indexes = [chunk for chunk in indexes if len(chunk) == self.batch_size] for chunk in indexes: for _ in range(self.repeat_count): for index in chunk: for _ in range(self.mini_repeat_count): yield index def __len__(self) -> int: return (self.num_samples // self.batch_size) * self.batch_size * self.mini_repeat_count * self.repeat_count class ReToolTrainer(Trainer): # Change this line def __init__( self, model: Optional[PreTrainedModel] = None, processing_class: Optional[PreTrainedTokenizerBase] = None, args: Optional[transformers.TrainingArguments] = None, reward_funcs: Optional[list[Callable]] = None, train_dataset: Optional[Dataset] = None, eval_dataset: Optional[Dataset] = None, # ReTool specific parameters - same as before eos_id: Optional[int] = None, interpreter_id: Optional[list[int]] = None, code_id: Optional[list[int]] = None, max_turns: int = 10, max_completion_length: int = 1024, temperature: float = 0.7, top_p: float = 0.9, top_k: int = 50, min_p: Optional[float] = None, mask_truncated_completions: bool = True, **kwargs ): # Initialize parent Trainer (simpler call) super().__init__( model=model, args=args, tokenizer=processing_class, # Note: Trainer uses 'tokenizer', not 'processing_class' data_collator=identity, # No data collation is needed in GRPO train_dataset=train_dataset, eval_dataset=eval_dataset, processing_class=processing_class, callbacks=callbacks, optimizers=optimizers, **kwargs ) # Store processing_class for compatibility self.processing_class = processing_class or self.tokenizer # Processing class if processing_class is None: self.processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path, padding_side="left") else: # Store processing_class for compatibility self.processing_class = processing_class or self.tokenizer if processing_class.pad_token is None: self.processing_class.pad_token = processing_class.eos_token # Add reward function handling (since Trainer doesn't have this) self.reward_funcs = reward_funcs or [self._binary_reward_function] # ReTool specific attributes self.eos_id = eos_id or self.processing_class.eos_token_id self.interpreter_id = interpreter_id or self._get_interpreter_token_ids() self.code_id = code_id or self._get_code_token_ids() self.max_turns = max_turns self.max_completion_length = max_completion_length self.temperature = temperature self.top_p = top_p self.top_k = top_k self.min_p = min_p self.mask_truncated_completions = mask_truncated_completions # ReTool specific logging self.reward_func_names = ["binary_correctness"] self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)} self._textual_logs = { "prompt": [], "completion": [], "rewards": {"binary_correctness": []} } # Generation configuration for ReTool self.generation_config = GenerationConfig( max_new_tokens=50, # Per turn, not total do_sample=True, pad_token_id=self.processing_class.pad_token_id, bos_token_id=self.processing_class.bos_token_id, eos_token_id=self.eos_id, # default stop on EOS temperature=self.temperature, top_p=self.top_p, top_k=self.top_k, min_p=self.min_p, return_dict_in_generate=True, use_cache=True, cache_implementation=args.cache_implementation, #args.cache_implementation = 'Offloaded Cache' ) def _set_signature_columns_if_needed(self): # If `self.args.remove_unused_columns` is True, non-signature columns are removed. # By default, this method sets `self._signature_columns` to the model's expected inputs. # In GRPOTrainer, we preprocess data, so using the model's signature columns doesn't work. # Instead, we set them to the columns expected by the `training_step` method, hence the override. if self._signature_columns is None: self._signature_columns = ["prompt", "image"] def _get_train_sampler(self, dataset=None): """Override to use RepeatSampler for GRPO.""" # Returns a sampler that # 1. ensures each prompt is repeated across multiple processes. This guarantees that identical prompts are # distributed to different GPUs, allowing rewards to be computed and normalized correctly within each prompt # group. Using the same seed across processes ensures consistent prompt assignment, preventing discrepancies # in group formation. # 2. repeats the batch multiple times to allow reusing generations across multiple updates. Refer to # _prepare_inputs to see how the generations are stored and reused. # In the following figure, the values are the prompt indices. The first row shows the first sampled batch, the # second row shows the second sampled batch, and so on. # # | GPU 0 | GPU 1 | # # global_step step <-───> num_generations=2 # <-───────> per_device_train_batch_size=3 # grad_accum ▲ ▲ 0 0 0 0 1 1 2 2 <- Generate for the first `steps_per_generation` (prompts 0 to 11); store the completions; use the first slice to compute the loss # =2 ▼ | 0 1 3 3 4 4 5 5 <- Take the stored generations and use the second slice to compute the loss # | # | 1 2 6 6 7 7 8 8 <- Take the stored generations and use the third slice to compute the loss # steps_per_gen=4 ▼ 1 3 9 9 10 10 11 11 <- Take the stored generations and use the fourth slice to compute the loss # # 2 4 12 12 13 13 14 14 <- Generate for the second `steps_per_generation` (prompts 12 to 23); store the completions; use the first slice to compute the loss # 2 5 15 15 16 16 17 17 <- Take the stored generations and use the second slice to compute the loss # ... if dataset is None: dataset = self.train_dataset return HFRepeatSampler( data_source=dataset, mini_repeat_count=self.num_generations, # e.g., 4 completions per prompt batch_size=self.args.generation_batch_size // self.num_generations, # correction repeat_count=self.num_iterations * self.args.steps_per_generation, # correction shuffle=True, seed=self.args.seed ) def get_train_dataloader(self): """Override to ensure our custom sampler is used.""" if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_dataset = self.train_dataset data_collator = self.data_collator if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): train_dataset = self._remove_unused_columns(train_dataset, description="training") else: data_collator = self._get_collator_with_removed_columns(data_collator, description="training") sampler = self._get_train_sampler(train_dataset) dataloader_batch_size = self._train_batch_size * self.args.steps_per_generation return DataLoader( train_dataset, batch_size= self.args.generation_batch_size, # < this is the change, HF was useing dataloader_batch_size sampler=sampler, collate_fn=data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, ) def _get_interpreter_token_ids(self) -> list[int]: """Get token IDs for and tags.""" start_token = self.processing_class.encode("", add_special_tokens=False)[0] end_token = self.processing_class.encode("", add_special_tokens=False)[0] return [start_token, end_token] def _get_code_token_ids(self) -> list[int]: """Get token IDs for and tags.""" start_token = self.processing_class.encode("", add_special_tokens=False)[0] end_token = self.processing_class.encode("", add_special_tokens=False)[0] return [start_token, end_token] def _binary_reward_function(self, prompts, completions, **kwargs) -> list[float]: """Default binary reward function for mathematical correctness.""" rewards = [] ground_truths = kwargs.get('ground_truths', [None] * len(completions)) for completion, ground_truth in zip(completions, ground_truths): if self._is_correct_answer(completion, ground_truth): rewards.append(1.0) else: rewards.append(-1.0) return rewards def _execute_code(self, code_block: str) -> str: """ Execute code in a sandbox environment. TODO: Implement actual code execution sandbox. For now, returns a placeholder. """ # Placeholder implementation return f"Executed: {code_block[:50]}... -> Result: 42" def _check_equivalence(self, predicted, ground_truth): """Simple equivalence check - you can make this more sophisticated later.""" # Simple string comparison for now return str(predicted).strip() == str(ground_truth).strip() def _is_correct_answer(self, completion_text, ground_truth): import re # Look for boxed answer match = re.search(r'\\boxed\{([^}]+)\}', completion_text) if match: predicted = match.group(1) return self._check_equivalence(predicted, ground_truth) return False def _compute_rewards(self, inputs, prompts, completions, completion_ids_list=None): """Calculate rewards for completions and combine them according to weights.""" device = self.device # Your device might be set differently rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device) # Extract additional arguments from inputs if needed reward_kwargs = {} if isinstance(inputs, list) and len(inputs) > 0 and isinstance(inputs[0], dict): keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]] reward_kwargs = {key: [example[key] for example in inputs] for key in keys} # Add correct_answers to kwargs if present (common in math reasoning tasks) if "correct_answers" in reward_kwargs: reward_kwargs["solution"] = reward_kwargs["correct_answers"] # Alias for compatibility # Calculate rewards for each function with non-zero weight for i, (reward_func, func_name) in enumerate(zip(self.reward_funcs, self.reward_func_names)): # Skip computation if weight is zero if abs(self.reward_weights[i].item()) < 1e-6: rewards_per_func[:, i] = float('nan') if self.verbose: print(f"Skipping reward '{func_name}' (zero weight)") continue # Calculate reward try: # Call the reward function with appropriate arguments rewards = reward_func( prompts=prompts, completions=completions, completion_ids=completion_ids_list if completion_ids_list is not None else None, **reward_kwargs ) # Convert None values to NaN and ensure it's a tensor rewards = [r if r is not None else float('nan') for r in rewards] rewards_per_func[:, i] = torch.tensor(rewards, dtype=torch.float32, device=device) # Log reward statistics if verbose if self.verbose: valid_rewards = [r for r in rewards if not (r is None or (isinstance(r, float) and math.isnan(r)))] if valid_rewards: print(f"Reward '{func_name}': min={min(valid_rewards):.4f}, max={max(valid_rewards):.4f}, " f"mean={sum(valid_rewards)/len(valid_rewards):.4f}") except Exception as e: print(f"Error in reward function '{func_name}': {e}") rewards_per_func[:, i] = float('nan') # Combine rewards using weights rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1) # Convert to list for easier handling final_rewards = rewards.cpu().tolist() return final_rewards def compute_rewards_and_advantages(self, inputs, prompts, completions, completion_ids_list=None): """Calculate rewards and compute advantages based on those rewards.""" # First calculate rewards rewards = self.compute_rewards(inputs, prompts, completions, completion_ids_list) # Convert to tensor if not already if not isinstance(rewards, torch.Tensor): rewards = torch.tensor(rewards, dtype=torch.float32, device=self.device) # For now, simple advantage calculation advantages = rewards.clone() # Simple case: advantages = rewards # If later I want to implement GRPO-style advantage calculation: if self.use_grouped_advantages: # Reshape rewards into groups (assuming self.num_generations is set) grouped_rewards = rewards.view(-1, self.num_generations) # Calculate statistics per group mean_grouped_rewards = grouped_rewards.mean(dim=1) std_grouped_rewards = grouped_rewards.std(dim=1) # Expand means and stds to match original shape mean_expanded = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0) std_expanded = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0) # Compute advantages: reward - baseline advantages = rewards - mean_expanded # Optionally normalize advantages if self.normalize_advantages: # Avoid division by zero std_expanded = torch.clamp(std_expanded, min=1e-8) advantages = advantages / std_expanded return advantages def _custom_generate(self, input_ids, attention_mask=None, past_key_values=None, max_new_tokens=50, eos_token_ids=None): """Custom generation function that avoids KV cache issues""" if attention_mask is None: attention_mask = torch.ones_like(input_ids) if eos_token_ids is None: eos_token_ids = [self.processing_class.eos_token_id] # Initialize current_ids = input_ids.clone() current_mask = attention_mask.clone() current_kv = past_key_values # Generate tokens in batches for efficiency all_tokens = [] batch_size = 10 # Process this many tokens at once for start_idx in range(0, max_new_tokens, batch_size): # How many tokens to generate in this batch batch_tokens = min(batch_size, max_new_tokens - start_idx) # Accumulate new tokens new_tokens = [] for _ in range(batch_tokens): # Forward pass with proper cache handling with torch.no_grad(): outputs = self.model( input_ids=current_ids if current_kv is None else current_ids[:, -1:], attention_mask=current_mask if current_kv is None else current_mask[:, -1:], past_key_values=DynamicCache.from_legacy_cache(current_kv) if current_kv is not None else None, use_cache=True ) # Sample next token next_token_logits = outputs.logits[:, -1, :] / self.temperature filtered_logits = self._filter_logits(next_token_logits) probs = torch.nn.functional.softmax(filtered_logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1) # Add to accumulated tokens token_id = next_token.item() new_tokens.append(token_id) # Update for next iteration current_ids = torch.cat([current_ids, next_token], dim=1) token_mask = torch.ones((1, 1), device=current_mask.device, dtype=current_mask.dtype) current_mask = torch.cat([current_mask, token_mask], dim=1) current_kv = outputs.past_key_values # Check for stop tokens - include both EOS and code_end if token_id in eos_token_ids: break # Add batch tokens to overall result all_tokens.extend(new_tokens) # Check if we hit a stop token if len(new_tokens) < batch_tokens: break # Convert to tensor result = torch.tensor([all_tokens], device=input_ids.device) return result, current_kv def _filter_logits(self, logits): """Apply top-k and top-p filtering""" if self.top_k > 0: top_k_logits, top_k_indices = torch.topk(logits, self.top_k, dim=-1) logits[0, :] = torch.full_like(logits[0, :], float('-inf')) logits[0, top_k_indices[0]] = top_k_logits[0] if self.top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) cumulative_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above threshold sorted_indices_to_remove = cumulative_probs > self.top_p # Shift the indices to the right to keep the first token above threshold sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 # Scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = float('-inf') return logits def _retool_generate_with_interpreter(self, prompt_ids_batch, attention_mask_batch, eos_id, interpreter_id, code_id, max_turns=10): """Implementation with custom generation to avoid KV cache issues""" batch_size = prompt_ids_batch.size(0) batch_completion = [] batch_interpreter_positions = [] for i in range(batch_size): # Initialize current_input_id = prompt_ids_batch[i:i+1] current_attention_mask = attention_mask_batch[i:i+1] current_kv = None # Track completion (excludes prompt) cumulative_completion_ids = torch.empty((1, 0), dtype=torch.long, device=prompt_ids_batch.device) interpreter_positions = [] for turn_idx in range(max_turns): # Check if input is empty if current_input_id.size(1) == 0: break # Generate with custom function newly_generated_tokens, current_kv = self._custom_generate( input_ids=current_input_id, attention_mask=current_attention_mask, past_key_values=current_kv, max_new_tokens=self.max_completion_length, # Use class attribute eos_token_ids=[eos_id, code_id[1]] ) # Add to completion cumulative_completion_ids = torch.cat([cumulative_completion_ids, newly_generated_tokens], dim=1) # Check last token last_token_id = newly_generated_tokens[0, -1].item() if newly_generated_tokens.size(1) > 0 else None # Check for end conditions if last_token_id == eos_id or turn_idx == max_turns - 1: batch_completion.append(cumulative_completion_ids.squeeze(0)) batch_interpreter_positions.append(interpreter_positions) break # Check for code end token if last_token_id == code_id[1]: # Extract code from the full text full_text = self.processing_class.decode( torch.cat([prompt_ids_batch[i], cumulative_completion_ids[0]], dim=0) ) code_match = re.search(r'(.*?)', full_text, re.DOTALL) if code_match: code_block = code_match.group(1).strip() interpreter_text = self._execute_code(code_block) # Format and add interpreter output formatted_feedback = f"{self.processing_class.decode(interpreter_id[0])}{interpreter_text}{self.processing_class.decode(interpreter_id[1])}" interpreter_ids = self.processing_class( formatted_feedback, return_tensors="pt", add_special_tokens=False ).input_ids.to(prompt_ids_batch.device) # Record positions interpreter_start_idx = cumulative_completion_ids.size(1) cumulative_completion_ids = torch.cat([cumulative_completion_ids, interpreter_ids], dim=1) interpreter_end_idx = cumulative_completion_ids.size(1) - 1 interpreter_positions.append((interpreter_start_idx, interpreter_end_idx)) # Set up for next turn current_input_id = interpreter_ids current_attention_mask = torch.ones_like(current_input_id) # Keep current_kv from previous generation else: # No code block found despite token break else: # Continue with the newly generated tokens current_input_id = newly_generated_tokens current_attention_mask = torch.ones_like(current_input_id) else: # Loop finished due to max_turns without a break batch_completion.append(cumulative_completion_ids.squeeze(0)) batch_interpreter_positions.append(interpreter_positions) # Pad sequences if len(batch_completion) > 0: # Ensure padding_value is a valid integer padding_value = self.processing_class.pad_token_id if padding_value is None: padding_value = 0 # Use 0 as a default if pad_token_id is None padded_sequences = torch.nn.utils.rnn.pad_sequence( batch_completion, batch_first=True, padding_value=padding_value ) else: padded_sequences = torch.empty((0, 0), dtype=torch.long, device=prompt_ids_batch.device) return padded_sequences, batch_interpreter_positions def _create_interpreter_mask( self, completion_ids: torch.Tensor, interpreter_positions: list[list[tuple[int, int]]] ) -> torch.Tensor: """ Create interpreter mask from positions. Args: completion_ids: Tensor of shape (batch_size, seq_length) interpreter_positions: List[List[Tuple[start_idx, end_idx]]] - Indices are relative to completion_ids - start_idx: inclusive, end_idx: INCLUSIVE (unlike typical Python slicing) Returns: interpreter_mask: Tensor of shape (batch_size, seq_length) 1 = model-generated token, 0 = interpreter token """ batch_size, seq_length = completion_ids.shape # Initialize mask with all 1s (assume all tokens are model-generated) interpreter_mask = torch.ones(batch_size, seq_length, dtype=torch.float, device=completion_ids.device) # For each sequence in the batch for batch_idx, positions_in_sequence in enumerate(interpreter_positions): # For each interpreter section in this sequence for start_idx, end_idx in positions_in_sequence: # Clamp indices to valid range start_idx = max(0, min(start_idx, seq_length - 1)) end_idx = max(0, min(end_idx, seq_length - 1)) # Zero out interpreter tokens (BOTH start and end inclusive) if start_idx <= end_idx: # Changed from < to <= interpreter_mask[batch_idx, start_idx:end_idx + 1] = 0 # Changed to end_idx + 1 return interpreter_mask def _generate_and_score_completions( self, inputs: list[dict[str, Union[torch.Tensor, Any]]] ) -> dict[str, Union[torch.Tensor, Any]]: device = self.accelerator.device mode = "train" if self.model.training else "eval" prompts = [x["prompt"] for x in inputs] prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs] prompt_inputs = self.processing_class( text=prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False ) prompt_inputs = super()._prepare_inputs(prompt_inputs) prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"] if self.max_prompt_length is not None: prompt_ids = prompt_ids[:, -self.max_prompt_length :] prompt_mask = prompt_mask[:, -self.max_prompt_length :] # use custom multi-turn-w-tool-use Generate completions completion_ids, interpreter_positions = self._retool_generate_with_interpreter( prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config, eos_id = self.eos_id, interpreter_id = self.interpreter_id, code_id = self.code_id ) # Mask everything after the first EOS token is_eos = completion_ids == self.processing_class.eos_token_id eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device) eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)] sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1) completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int() # compute interpreter mask interpreter_mask = self._create_interpreter_mask(completion_ids, interpreter_positions) # If mask_truncated_completions is enabled, zero out truncated completions in completion_mask if self.mask_truncated_completions: truncated_completions = ~is_eos.any(dim=1) completion_mask = completion_mask * (~truncated_completions).unsqueeze(1).int() # Concatenate prompt_mask with completion_mask for logit computation attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) # (B, P+C) # no need to return old_per_token_logps # Extract ground truths from inputs ground_truths = [x.get("answer") for x in inputs] # Adjust key name as needed # Decode completions for reward computation completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) # Compute rewards and advantages advantages = self._compute_rewards_and_advantages( completions_text, ground_truths, device=device ) # Log the metrics if mode == "train": self.state.num_input_tokens_seen += attention_mask.sum().item() # Skip gather self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen] # Log completion lengths completion_lengths = completion_mask.sum(1) # Skip gather self._metrics[mode]["completions/mean_length"].append(completion_lengths.float().mean().item()) self._metrics[mode]["completions/min_length"].append(completion_lengths.float().min().item()) self._metrics[mode]["completions/max_length"].append(completion_lengths.float().max().item()) # Log terminated sequences terminated_with_eos = is_eos.any(dim=1) # Skip gather term_completion_lengths = completion_lengths[terminated_with_eos] clipped_completions_ratio = 1 - len(term_completion_lengths) / len(completion_lengths) self._metrics[mode]["completions/clipped_ratio"].append(clipped_completions_ratio) if len(term_completion_lengths) == 0: term_completion_lengths = torch.zeros(1, device=device) self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item()) # Log rewards (simplified for single reward function) advantages_tensor = advantages self._metrics[mode]["rewards/binary_correctness/mean"].append(advantages_tensor.mean().item()) self._metrics[mode]["rewards/binary_correctness/std"].append(advantages_tensor.std().item()) # Log texts for debugging self._textual_logs["prompt"].extend(prompts_text) self._textual_logs["completion"].extend(completions_text) self._textual_logs["rewards"]["binary_correctness"].extend(advantages.tolist()) return { "prompt_ids": prompt_ids, "prompt_mask": prompt_mask, "completion_ids": completion_ids, "completion_mask": completion_mask, "interpreter_mask": interpreter_mask, "advantages": advantages } # Get the per-token log probabilities for the completions for the model and the reference model @profiling_decorator def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep, batch_size=None) -> torch.Tensor: batch_size = batch_size or input_ids.size(0) # Chunk inputs into smaller batches to reduce memory peak all_logps = [] for i in range(0, input_ids.size(0), batch_size): input_ids_batch = input_ids[i : i + batch_size] attention_mask_batch = attention_mask[i : i + batch_size] # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded logits = model( input_ids=input_ids_batch, attention_mask=attention_mask_batch, logits_to_keep=logits_to_keep + 1 ).logits logits = logits[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred input_ids_batch = input_ids_batch[:, -logits_to_keep:] # For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits ourselves. # See https://github.com/huggingface/trl/issues/2770 logits = logits[:, -logits_to_keep:] # Divide logits by sampling temperature. # See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details logits = logits / self.temperature logps = selective_log_softmax(logits, input_ids_batch) # compute logprobs for the input tokens all_logps.append(logps) return torch.cat(all_logps, dim=0) @staticmethod def selective_log_softmax(logits, index): """ A memory-efficient implementation of the common `log_softmax -> gather` operation. This function is equivalent to the following naive implementation: ```python logps = torch.gather(logits.log_softmax(-1), dim=-1, index=index.unsqueeze(-1)).squeeze(-1) ``` Args: logits (`torch.Tensor`): Logits tensor of shape `(..., num_classes)`. index (`torch.Tensor`): Index tensor of shape `(...)`, specifying the positions to gather from the log-softmax output. Returns: `torch.Tensor`: Gathered log probabilities with the same shape as `index`. """ if logits.dtype in [torch.float32, torch.float64]: selected_logits = torch.gather(logits, dim=-1, index=index.unsqueeze(-1)).squeeze(-1) # loop to reduce peak mem consumption logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) else: # logsumexp approach is unstable with bfloat16, fall back to slightly less efficent approach per_token_logps = [] for row_logits, row_labels in zip(logits, index): # loop to reduce peak mem consumption row_logps = F.log_softmax(row_logits, dim=-1) row_per_token_logps = row_logps.gather(dim=-1, index=row_labels.unsqueeze(-1)).squeeze(-1) per_token_logps.append(row_per_token_logps) per_token_logps = torch.stack(per_token_logps) return per_token_logps def _compute_loss(self, model, inputs): # Compute the per-token log probabilities for the model prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] # Added for ReTool Trainer interpreter_mask = inputs["interpreter_mask"] final_mask = interpreter_mask * completion_mask input_ids = torch.cat([prompt_ids, completion_ids], dim=1) attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep) with torch.no_grad(): ref_per_token_logps = self._get_per_token_logps( self.ref_model, input_ids, attention_mask, logits_to_keep ) # Compute the KL divergence between the model and the reference model if self.beta != 0.0: per_token_kl = ( torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1 ) # Compute the loss advantages = inputs["advantages"] old_per_token_logps = ref_per_token_logps coef_1 = torch.exp(per_token_logps - old_per_token_logps) coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high) per_token_loss1 = coef_1 * advantages.unsqueeze(1) per_token_loss2 = coef_2 * advantages.unsqueeze(1) per_token_loss = -torch.min(per_token_loss1, per_token_loss2) if self.beta != 0.0: per_token_loss = per_token_loss + self.beta * per_token_kl # For PPO loss masked_loss = per_token_loss * final_mask total_valid_tokens = final_mask.sum() + 1e-8 # Avoid division by zero loss = masked_loss.sum() / total_valid_tokens """ --- """ # Log the metrics mode = "train" if self.model.training else "eval" if self.beta != 0.0: mean_kl = (per_token_kl * final_mask).sum() / final_mask.sum() self._metrics[mode]["kl"].append(self.accelerator.gather_for_metrics(mean_kl).nanmean().item()) # Compute the clipped probability ratios is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0) is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0) is_region_clipped = is_low_clipped | is_high_clipped low_clip = (is_low_clipped * final_mask).sum() / final_mask.sum() high_clip = (is_high_clipped * final_mask).sum() / final_mask.sum() clip_ratio = (is_region_clipped * final_mask).sum() / final_mask.sum() gathered_low_clip = self.accelerator.gather_for_metrics(low_clip) self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item()) self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item()) gathered_high_clip = self.accelerator.gather_for_metrics(high_clip) self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item()) self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item()) gathered_clip_ratio = self.accelerator.gather_for_metrics(clip_ratio) self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item()) return loss def train(self): """ Comprehensive training loop for ReTool with GRPO. Adapted from train_with_batching to work as a method. """ # Initialize self.model.train() if not hasattr(self, 'ref_model') or self.ref_model is None: self.ref_model = deepcopy(self.model) self.ref_model.eval() # Setup tracking writer = SummaryWriter(self.args.logging_dir) training_history = [] # Get dataloader with our custom sampler train_dataloader = self.get_train_dataloader() # Generation storage for reuse stored_generation_outputs = None generation_counter = 0 global_step = 0 for epoch in range(self.args.num_train_epochs): epoch_metrics = [] start_mem = torch.cuda.memory_allocated() if torch.cuda.is_available() else 0 for batch_idx, batch in enumerate(train_dataloader): # batch already has repeated prompts from our RepeatSampler # Shape: (generation_batch_size, ...) where generation_batch_size = unique_prompts * num_generations # Determine if we need new generations generate_new = (global_step % (self.args.steps_per_generation * self.num_iterations)) == 0 if generate_new: print(f"Generating new completions at step {global_step}") with torch.no_grad(): # This is where ReTool magic happens - generate with code execution! stored_generation_outputs = self._generate_and_score_completions(batch) generation_counter = 0 # Now train on the stored generations # This replaces the mini/micro batch logic from your original function batch_loss = self._train_on_stored_generations( stored_generation_outputs, epoch_metrics ) global_step += 1 generation_counter += 1 # Logging if global_step % self.args.logging_steps == 0: self._log_training_metrics(writer, epoch_metrics, global_step) # Optional: Check for training instability if self._should_stop_training(epoch_metrics): print("Training instability detected! Stopping early.") return training_history # End of epoch end_mem = torch.cuda.memory_allocated() if torch.cuda.is_available() else 0 epoch_summary = self._compute_epoch_summary(epoch_metrics, start_mem, end_mem) training_history.append(epoch_summary) # Log epoch results self._log_epoch_metrics(epoch, epoch_summary, writer) # Update scheduler if we have one if hasattr(self, 'scheduler') and self.scheduler is not None: self.scheduler.step(epoch_summary['mean_reward']) print(f"Current learning rate: {self.optimizer.param_groups[0]['lr']}") writer.close() return training_history def _train_on_stored_generations(self, generation_outputs, epoch_metrics): """ Train on stored generations with mini/micro-batching. This replaces the inner loops of your train_with_batching. """ # Extract components from generation_outputs # These already include code execution results and advantages! prompt_ids = generation_outputs['prompt_ids'] completion_ids = generation_outputs['completion_ids'] advantages = generation_outputs['advantages'] completion_mask = generation_outputs['completion_mask'] interpreter_mask = generation_outputs.get('interpreter_mask', completion_mask) batch_size = prompt_ids.size(0) # Mini-batch size: process multiple groups together # Each group has num_generations completions mini_batch_size = self.args.per_device_train_batch_size * self.num_generations # Micro-batch size: for memory efficiency within mini-batch micro_batch_size = max(self.num_generations, 4) # At least one full group total_loss = 0 num_updates = 0 # Shuffle indices for this training iteration indices = torch.randperm(batch_size) # Process in mini-batches for mini_start in range(0, batch_size, mini_batch_size): mini_end = min(mini_start + mini_batch_size, batch_size) mini_indices = indices[mini_start:mini_end] self.optimizer.zero_grad() mini_batch_loss = 0 num_micro_batches = 0 # Process in micro-batches (gradient accumulation) for micro_start in range(0, len(mini_indices), micro_batch_size): micro_end = min(micro_start + micro_batch_size, len(mini_indices)) micro_indices = mini_indices[micro_start:micro_end] # Create micro-batch micro_batch = { 'prompt_ids': prompt_ids[micro_indices], 'prompt_mask': generation_outputs['prompt_mask'][micro_indices], 'completion_ids': completion_ids[micro_indices], 'completion_mask': completion_mask[micro_indices], 'interpreter_mask': interpreter_mask[micro_indices], 'advantages': advantages[micro_indices] } # Compute GRPO loss (this uses your _compute_loss method) loss = self._compute_loss(self.model, micro_batch) # Scale for gradient accumulation scaled_loss = loss * (len(micro_indices) / len(mini_indices)) scaled_loss.backward() mini_batch_loss += loss.item() num_micro_batches += 1 # Gradient clipping and optimizer step grad_norm = torch.nn.utils.clip_grad_norm_( self.model.parameters(), max_norm=1.0 ) self.optimizer.step() # Track metrics batch_metrics = { 'loss': mini_batch_loss / num_micro_batches, 'gradient_norm': grad_norm.item(), 'batch_size': len(mini_indices), 'advantages_mean': advantages[mini_indices].mean().item(), 'advantages_std': advantages[mini_indices].std().item() } epoch_metrics.append(batch_metrics) total_loss += mini_batch_loss num_updates += 1 return total_loss / max(num_updates, 1)