# Inspired by: https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/language-modeling/run_clm.py import math from typing import TYPE_CHECKING, Optional, List from transformers import DataCollatorForLanguageModeling, Trainer from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset from llmtuner.extras.ploting import plot_loss from llmtuner.tuner.core import load_model_and_tokenizer if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments, TrainerCallback from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments def run_pt( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", callbacks: Optional[List["TrainerCallback"]] = None ): dataset = get_dataset(model_args, data_args) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="pt") dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="pt") data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, tokenizer=tokenizer, data_collator=data_collator, callbacks=callbacks, **split_dataset(dataset, data_args, training_args) ) # Training if training_args.do_train: train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() trainer.save_model() if trainer.is_world_process_zero() and model_args.plot_loss: plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval") try: perplexity = math.exp(metrics["eval_loss"]) except OverflowError: perplexity = float("inf") metrics["perplexity"] = perplexity trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics)