Spaces:
Running
Running
File size: 1,132 Bytes
20e43d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from fastapi import FastAPI, UploadFile, File
import tensorflow as tf
import numpy as np
from PIL import Image
import io
import requests
import os
MODEL_URL = "https://huggingface.co/blaxx14/cat-vs-dog-inceptionv3/resolve/main/cat_dog_inception_v3.h5"
MODEL_PATH = "cat_dog_inception_v3.h5"
app = FastAPI()
def download_model():
if not os.path.exists(MODEL_PATH):
print("Downloading model...")
response = requests.get(MODEL_URL)
with open(MODEL_PATH, "wb") as f:
f.write(response.content)
print("Model downloaded!")
download_model()
print("Loading model...")
model = tf.keras.models.load_model(MODEL_PATH)
print("Model loaded!")
def preprocess_image(image):
img = Image.open(io.BytesIO(image)).convert("RGB")
img = img.resize((150, 150))
img = np.array(img) / 255.0
img = np.expand_dims(img, axis=0)
return img
@app.post("/predict/")
async def predict(file: UploadFile = File(...)):
image = await file.read()
processed_img = preprocess_image(image)
prediction = model.predict(processed_img)
return {"prediction": prediction.tolist()}
|