Spaces:
Sleeping
Sleeping
File size: 12,874 Bytes
81f6231 ec46473 81f6231 15a0b55 81f6231 15a0b55 81f6231 ec46473 81f6231 15a0b55 81f6231 15a0b55 81f6231 15a0b55 81f6231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import re
import fitz
import os
import json
import pandas as pd
from .file_utils import convert_pdf_to_word, delete_temp_folder, extract_tables_from_docx
from collections import Counter
from openpyxl import load_workbook
from difflib import SequenceMatcher
def is_similar_header(h1, h2, threshold=0.8):
if len(h1) != len(h2):
return False
ratio = sum(SequenceMatcher(None, a, b).ratio() for a, b in zip(h1, h2)) / len(h1)
return ratio > threshold
def is_empty_data(rows):
return all(all(cell.strip() == "" for cell in row) for row in rows)
def parse_table_data(raw_tables):
parsed_tables = []
last_table = None
pending_header_rows = []
pending_bold_maps = []
for table_dict in raw_tables:
table = table_dict["table_data"]
bold_map = table_dict["bold_map"]
if not table or not bold_map or len(table) != len(bold_map):
continue
if pending_header_rows:
table = pending_header_rows + table
bold_map = pending_bold_maps + bold_map
pending_header_rows = []
pending_bold_maps = []
title = Counter(table[0]).most_common(1)[0][0] if table[0] else "UNKNOWN"
bold_row_indices = [i for i, row in enumerate(bold_map) if any(row)]
if not bold_row_indices:
if title == "NO":
headers = table[0]
data_rows = table[1:]
bold_indices = list(range(len(headers)))
else:
if last_table:
for row in table:
row_dict = {
last_table["headers"][i]: row[i] if i < len(row) else "not item"
for i in range(len(last_table["headers"]))
}
not_item_count = sum(1 for v in row_dict.values() if v.strip() == "not item")
if not_item_count <= 6:
last_table["rows"].append(row_dict)
continue
else:
if len(bold_row_indices) >= 3:
header_row_index = bold_row_indices[2]
elif len(bold_row_indices) == 2:
header_row_index = bold_row_indices[1]
else:
header_row_index = bold_row_indices[0]
header_row = table[header_row_index]
bold_row = bold_map[header_row_index]
headers = [
cell.strip() if isinstance(cell, str) else f"COL_{i}"
for i, (cell, is_bold) in enumerate(zip(header_row, bold_row)) if is_bold
]
bold_indices = [i for i, is_bold in enumerate(bold_row) if is_bold]
data_rows = table[header_row_index + 1:]
if is_empty_data(data_rows):
if last_table and is_similar_header(headers, last_table["headers"]):
continue
else:
continue
rows = []
for row in data_rows:
row_dict = {}
for i, header_index in enumerate(bold_indices):
header = headers[i] if i < len(headers) else f"COL_{header_index}"
value = row[header_index] if header_index < len(row) else ""
row_dict[header] = value
rows.append(row_dict)
parsed = {
"title": title,
"headers": headers,
"rows": rows
}
parsed_tables.append(parsed)
last_table = parsed
return parsed_tables
def clean_checkbox_newlines(text):
pattern = r"([ββ])\s*\n"
cleaned_text = re.sub(pattern, r"\1 ", text)
return cleaned_text
def parse_promotion_pdf(pdf_path):
doc = fitz.open(pdf_path)
text = ""
for page in doc:
text += page.get_text()
text= clean_checkbox_newlines(text)
pathname = os.path.splitext(os.path.basename(pdf_path))[0]
docx_path = pathname + ".docx"
with open(pdf_path, 'rb') as f:
convert_pdf_to_word(f, os.path.join('/tmp', docx_path))
tables = extract_tables_from_docx(os.path.join('/tmp', docx_path))
tables_result = parse_table_data(tables)
del tables_result[0]
result = {
"header": {},
"products": [],
"outlets": [],
"mechanisms": [],
"budget": {},
}
header_patterns = {
"file_number": r"NOMOR:\s*(.+)",
"product_category": r"PRODUCT CATEGORY\s*:\s*(.+)",
"brand": r"BRAND\s*:\s*(.+)",
"channel": r"CHANNEL\s*:\s*(.+)",
"region" : r"REGION\s*:\s*(.+)",
"sub_region": r"SUB REGION\s*:\s*(.+)",
"distributor": r"DISTRIBUTOR\s*:\s*(.+)",
"promo_type" : r"PROMO TYPE\s*:\s*(.+)",
"sub_promo_type" : r"SUB PROMO TYPE\s*:\s*(.+)",
"period": r"PERIODE CP:\s*(\d{2}/\d{2}/\d{4})\s*-\s*(\d{2}/\d{2}/\d{4})",
"ref_doc" : r"REF DOC\s*:\s*(.+)",
"ref_cp_no" : r"REF CP NO\s*:\s*(.+)",
"cost_category": r"COST CATEGORY\s*((?:[ββ][^\n]*\n)+)(?=(?:TIPE CP|$))",
"tipe_cp": r"TIPE CP\s*((?:[ββ][^\n]*\n)+)(?=(?:TIPE CLAIM|$))",
"tipe_claim": r"TIPE CLAIM\s*((?:[ββ][^\n]*\n)+)(?=(?:CLAIM BASED|$))",
"claim_based": r"CLAIM BASED\s*((?:[ββ][^\n]*\n)+)(?=$)"
}
# result["text_table"] = tables_result
for field, pattern in header_patterns.items():
match = re.search(pattern, text)
if match:
if field == "period":
result["header"]["validfrom"] = match.group(1).replace("/", "")
result["header"]["validto"] = match.group(2).replace("/", "")
elif field in ["cost_category", "tipe_cp", "tipe_claim", "claim_based"]:
section_text = match.group(1)
text = text+section_text
options = {}
for opt_match in re.finditer(r"([ββ])\s*([^\nββ]+)", section_text):
is_checked = opt_match.group(1) == 'β'
option_name = opt_match.group(2).strip()
if option_name:
options[option_name] = is_checked
result["header"][field] = options
else:
result["header"][field] = match.group(1).strip()
product_table_start = next((item["rows"] for item in tables_result if item["title"] == "DISCOUNT PROMOTION"), [])
strata_table_start = next((item["rows"] for item in tables_result if item["title"] == "STRATA DISCOUNT TABLE"), [])
if product_table_start and strata_table_start:
product_lookup = {item["UOM"]: item for item in product_table_start}
for feature in strata_table_start:
uom = feature['UOM']
product_data = product_lookup.get(uom)
if product_data:
product = {
"sku": feature['SKU'],
"uom": uom,
"price_list": product_data.get('PRICE LIST SATP'),
"discount_percent": feature.get('DISC %'),
"rbp_store": product_data.get('RBP STORE'),
"share_dist": product_data.get('SHARE DIST %'),
"rbp_net": feature.get('RBP NET INC PPN')
}
result["products"].append(product)
result["outlets"] = next((item["rows"] for item in tables_result if item["title"] == "NO"), [])
mechanism_match = re.search(r"MECHANISM:\s*(.+?)(?=(β|$))", text, re.DOTALL)
if mechanism_match:
mechanisms = [m.strip() for m in mechanism_match.group(1).split("\n") if m.strip()]
mechanisms_clean = [re.sub(r'\'\d+\.\s*', '', m) for m in mechanisms]
result["mechanisms"] = mechanisms_clean
budget_match = re.search(r"TOTAL EST BUDGET PROMO\s*\|\s*([\d.,]+)", text)
if budget_match:
budget = float(budget_match.group(1).replace(".", "").replace(",", "."))
result["budget"]["total"] = budget
delete_temp_folder()
return result
def parse_promotion_excel(excel_path, filename):
wb = load_workbook(excel_path)
ws = wb.active
start_row = None
start_col = None
for i, row in enumerate(ws.iter_rows(min_row=1, max_row=20), start=1): # Cek 20 baris pertama
for j, cell in enumerate(row, start=1):
if cell.value not in [None, ''] and isinstance(cell.value, str):
if start_row is None or i < start_row:
start_row = i
if start_col is None or j < start_col:
start_col = j
if start_row is not None:
break
if start_row != 1 or start_col != 1:
new_ws = wb.create_sheet(title="Normalized")
for i, row in enumerate(ws.iter_rows(min_row=start_row, values_only=True), start=1):
for j, val in enumerate(row[start_col - 1:], start=1):
new_ws.cell(row=i, column=j, value=val)
wb.remove(ws)
ws = new_ws
wb.save(excel_path)
df = pd.read_excel(excel_path, engine='openpyxl', header=0)
df.dropna(axis=1, how='all', inplace=True)
df.dropna(axis=0, how='all', inplace=True)
df.columns = [str(col) if not str(col).startswith('Unnamed') else f'Col_{i}' for i, col in enumerate(df.columns)]
df = df.where(pd.notnull(df), None)
data = df.to_dict(orient="records")
# Buat folder temp jika belum ada
os.makedirs('/tmp', exist_ok=True)
# Tambah .json jika belum ada
if not filename.lower().endswith('.json'):
filename += '.json'
# Cegah overwrite file
filepath = os.path.join('/tmp', filename)
base_name, ext = os.path.splitext(filename)
copy_num = 1
while os.path.exists(filepath):
filepath = os.path.join('/tmp', f"{base_name} ({copy_num}){ext}")
copy_num += 1
with open(filepath, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
delete_temp_folder()
return data
def convert_to_target_json(parsed_data):
"""Convert parsed data to match the target JSON structure"""
target_json = {
"m_discountschema_id": 0,
"ad_org_id": 0,
"c_doctype_id": 1000134,
"name": f"{parsed_data['header'].get('brand', '')} PST DEAL KHUSUS",
"description": f"{parsed_data['header'].get('brand', '')} PST DEAL KHUSUS",
"discounttype": "B",
"vendor_id": 1000078,
"requirementtype": "MS",
"flatdiscounttype": "P",
"cumulativelevel": "L",
"validfrom": parsed_data['header'].get('validfrom', ''),
"validto": parsed_data['header'].get('validto', ''),
"selectiontype": "ISC",
"budgettype": "NB",
"organizationaleffectiveness": "ISO",
"qtyallocated": 0,
"issotrx": "Y",
"ispickup": "N",
"fl_isallowmultiplediscount": "N",
"isincludingsubordinate": "N",
"isbirthdaydiscount": "N",
"isactive": "Y",
"list_org": [{
"m_discountschema_id": 0,
"uns_discount_org_id": 0,
"ad_org_id": 0,
"ad_orgtrx_id": 1000006,
"isactive": "Y"
}],
"list_customer": [],
"list_break": []
}
for i, outlet in enumerate(parsed_data['outlets'], start=1):
target_json["list_customer"].append({
"m_discountschema_id": 0,
"uns_discount_customer_id": 0,
"m_discountschemabreak_id": 0,
"ad_org_id": 0,
"c_bpartner_id": 1000000 + i
})
for product in parsed_data['products']:
target_json["list_break"].append({
"m_discountschema_id": 0,
"m_discountschemabreak_id": 0,
"ad_org_id": 0,
"seqno": 10,
"targetbreak": "EP",
"discounttype": "PVD",
"breaktype": "M",
"calculationtype": "Q",
"name": f"{parsed_data['header'].get('promo_number', '')} {product['sku']}",
"requirementtype": "MS",
"productselection": "IOP",
"c_uom_id": 1000020,
"m_product_id": 1002979,
"budgettype": "GB",
"budgetcalculation": "QTY",
"qtyallocated": 1000,
"breakvalue": 0,
"breakdiscount": 0,
"isincludingsubordinate": "N",
"isshareddiscount": "N",
"isactive": "Y",
"list_line": [{
"m_discountschemabreak_id": 0,
"uns_dsbreakline_id": 0,
"name": f"{parsed_data['header'].get('promo_number', '')} {product['sku']}",
"breakvalue": 300,
"breakvalueto": 1000,
"qtyallocated": 1000,
"breakdiscount": product['discount_percent'],
"isactive": "Y"
}]
})
return target_json |