Spaces:
Running
Running
local gpu use
Browse files- gpu-requirements.txt +1 -0
- vllm-tutorial.ipynb +641 -0
gpu-requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
vllm
|
vllm-tutorial.ipynb
ADDED
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 10,
|
6 |
+
"id": "405bc169-e0b7-48e6-84b8-4e4a791cf61a",
|
7 |
+
"metadata": {
|
8 |
+
"scrolled": true
|
9 |
+
},
|
10 |
+
"outputs": [
|
11 |
+
{
|
12 |
+
"name": "stdout",
|
13 |
+
"output_type": "stream",
|
14 |
+
"text": [
|
15 |
+
"INFO 06-07 04:15:58 [__init__.py:243] Automatically detected platform cuda.\n",
|
16 |
+
"INFO 06-07 04:16:02 [__init__.py:31] Available plugins for group vllm.general_plugins:\n",
|
17 |
+
"INFO 06-07 04:16:02 [__init__.py:33] - lora_filesystem_resolver -> vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver\n",
|
18 |
+
"INFO 06-07 04:16:02 [__init__.py:36] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.\n",
|
19 |
+
"INFO 06-07 04:16:03 [api_server.py:1289] vLLM API server version 0.9.0.1\n",
|
20 |
+
"INFO 06-07 04:16:03 [cli_args.py:300] non-default args: {'host': '0.0.0.0', 'task': 'embed', 'trust_remote_code': True, 'enforce_eager': True, 'tensor_parallel_size': 2, 'gpu_memory_utilization': 0.4}\n",
|
21 |
+
"WARNING 06-07 04:16:14 [config.py:907] awq quantization is not fully optimized yet. The speed can be slower than non-quantized models.\n",
|
22 |
+
"WARNING 06-07 04:16:14 [arg_utils.py:1583] Compute Capability < 8.0 is not supported by the V1 Engine. Falling back to V0. \n",
|
23 |
+
"WARNING 06-07 04:16:14 [arg_utils.py:1431] The model has a long context length (40960). This may causeOOM during the initial memory profiling phase, or result in low performance due to small KV cache size. Consider setting --max-model-len to a smaller value.\n",
|
24 |
+
"INFO 06-07 04:16:14 [config.py:1875] Defaulting to use mp for distributed inference\n",
|
25 |
+
"WARNING 06-07 04:16:14 [cuda.py:87] To see benefits of async output processing, enable CUDA graph. Since, enforce-eager is enabled, async output processor cannot be used\n",
|
26 |
+
"INFO 06-07 04:16:14 [api_server.py:257] Started engine process with PID 13896\n",
|
27 |
+
"INFO 06-07 04:16:18 [__init__.py:243] Automatically detected platform cuda.\n",
|
28 |
+
"INFO 06-07 04:16:21 [__init__.py:31] Available plugins for group vllm.general_plugins:\n",
|
29 |
+
"INFO 06-07 04:16:21 [__init__.py:33] - lora_filesystem_resolver -> vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver\n",
|
30 |
+
"INFO 06-07 04:16:21 [__init__.py:36] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.\n",
|
31 |
+
"INFO 06-07 04:16:21 [llm_engine.py:230] Initializing a V0 LLM engine (v0.9.0.1) with config: model='Qwen/Qwen3-32B-AWQ', speculative_config=None, tokenizer='Qwen/Qwen3-32B-AWQ', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=True, dtype=torch.float16, max_seq_len=40960, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=awq, enforce_eager=True, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=Qwen/Qwen3-32B-AWQ, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=None, chunked_prefill_enabled=False, use_async_output_proc=False, pooler_config=PoolerConfig(pooling_type=None, normalize=None, softmax=None, step_tag_id=None, returned_token_ids=None), compilation_config={\"compile_sizes\": [], \"inductor_compile_config\": {\"enable_auto_functionalized_v2\": false}, \"cudagraph_capture_sizes\": [], \"max_capture_size\": 0}, use_cached_outputs=True, \n",
|
32 |
+
"WARNING 06-07 04:16:22 [multiproc_worker_utils.py:306] Reducing Torch parallelism from 64 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.\n",
|
33 |
+
"INFO 06-07 04:16:22 [cuda.py:240] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.\n",
|
34 |
+
"INFO 06-07 04:16:22 [cuda.py:289] Using XFormers backend.\n",
|
35 |
+
"INFO 06-07 04:16:27 [__init__.py:243] Automatically detected platform cuda.\n",
|
36 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:30 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks\n",
|
37 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:30 [__init__.py:31] Available plugins for group vllm.general_plugins:\n",
|
38 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:30 [__init__.py:33] - lora_filesystem_resolver -> vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver\n",
|
39 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:30 [__init__.py:36] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.\n",
|
40 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:30 [cuda.py:240] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.\n",
|
41 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:30 [cuda.py:289] Using XFormers backend.\n",
|
42 |
+
"INFO 06-07 04:16:31 [utils.py:1077] Found nccl from library libnccl.so.2\n",
|
43 |
+
"INFO 06-07 04:16:31 [pynccl.py:69] vLLM is using nccl==2.26.2\n",
|
44 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:31 [utils.py:1077] Found nccl from library libnccl.so.2\n",
|
45 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:31 [pynccl.py:69] vLLM is using nccl==2.26.2\n",
|
46 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:31 [custom_all_reduce_utils.py:245] reading GPU P2P access cache from /home/jovyan/.cache/vllm/gpu_p2p_access_cache_for_0,1.json\n",
|
47 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m WARNING 06-07 04:16:31 [custom_all_reduce.py:146] Custom allreduce is disabled because your platform lacks GPU P2P capability or P2P test failed. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
|
48 |
+
"INFO 06-07 04:16:31 [custom_all_reduce_utils.py:245] reading GPU P2P access cache from /home/jovyan/.cache/vllm/gpu_p2p_access_cache_for_0,1.json\n",
|
49 |
+
"WARNING 06-07 04:16:31 [custom_all_reduce.py:146] Custom allreduce is disabled because your platform lacks GPU P2P capability or P2P test failed. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
|
50 |
+
"INFO 06-07 04:16:31 [shm_broadcast.py:250] vLLM message queue communication handle: Handle(local_reader_ranks=[1], buffer_handle=(1, 4194304, 6, 'psm_8808788c'), local_subscribe_addr='ipc:///tmp/f2f3507a-b619-4382-897c-4059a5a27e80', remote_subscribe_addr=None, remote_addr_ipv6=False)\n",
|
51 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:31 [parallel_state.py:1064] rank 1 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 1, EP rank 1\n",
|
52 |
+
"INFO 06-07 04:16:31 [parallel_state.py:1064] rank 0 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0\n",
|
53 |
+
"INFO 06-07 04:16:31 [model_runner.py:1170] Starting to load model Qwen/Qwen3-32B-AWQ...\n",
|
54 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:31 [model_runner.py:1170] Starting to load model Qwen/Qwen3-32B-AWQ...\n",
|
55 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:16:32 [weight_utils.py:291] Using model weights format ['*.safetensors']\n",
|
56 |
+
"INFO 06-07 04:16:32 [weight_utils.py:291] Using model weights format ['*.safetensors']\n"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"name": "stderr",
|
61 |
+
"output_type": "stream",
|
62 |
+
"text": [
|
63 |
+
"Loading safetensors checkpoint shards: 0% Completed | 0/4 [00:00<?, ?it/s]\n",
|
64 |
+
"Loading safetensors checkpoint shards: 25% Completed | 1/4 [00:04<00:13, 4.64s/it]\n",
|
65 |
+
"Loading safetensors checkpoint shards: 50% Completed | 2/4 [00:13<00:13, 6.86s/it]\n",
|
66 |
+
"Loading safetensors checkpoint shards: 75% Completed | 3/4 [00:21<00:07, 7.69s/it]\n",
|
67 |
+
"Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:29<00:00, 7.84s/it]\n",
|
68 |
+
"Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:29<00:00, 7.45s/it]\n",
|
69 |
+
"\n"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"name": "stdout",
|
74 |
+
"output_type": "stream",
|
75 |
+
"text": [
|
76 |
+
"INFO 06-07 04:17:02 [default_loader.py:280] Loading weights took 29.98 seconds\n",
|
77 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:17:02 [default_loader.py:280] Loading weights took 30.20 seconds\n",
|
78 |
+
"INFO 06-07 04:17:02 [model_runner.py:1202] Model loading took 8.3324 GiB and 31.055884 seconds\n",
|
79 |
+
"\u001b[1;36m(VllmWorkerProcess pid=14061)\u001b[0;0m INFO 06-07 04:17:02 [model_runner.py:1202] Model loading took 8.3324 GiB and 31.096897 seconds\n",
|
80 |
+
"INFO 06-07 04:17:03 [api_server.py:1336] Starting vLLM API server on http://0.0.0.0:8000\n",
|
81 |
+
"INFO 06-07 04:17:03 [launcher.py:28] Available routes are:\n",
|
82 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /openapi.json, Methods: GET, HEAD\n",
|
83 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /docs, Methods: GET, HEAD\n",
|
84 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /docs/oauth2-redirect, Methods: GET, HEAD\n",
|
85 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /redoc, Methods: GET, HEAD\n",
|
86 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /health, Methods: GET\n",
|
87 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /load, Methods: GET\n",
|
88 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /ping, Methods: POST\n",
|
89 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /ping, Methods: GET\n",
|
90 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /tokenize, Methods: POST\n",
|
91 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /detokenize, Methods: POST\n",
|
92 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /v1/models, Methods: GET\n",
|
93 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /version, Methods: GET\n",
|
94 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /v1/chat/completions, Methods: POST\n",
|
95 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /v1/completions, Methods: POST\n",
|
96 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /v1/embeddings, Methods: POST\n",
|
97 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /pooling, Methods: POST\n",
|
98 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /classify, Methods: POST\n",
|
99 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /score, Methods: POST\n",
|
100 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /v1/score, Methods: POST\n",
|
101 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /v1/audio/transcriptions, Methods: POST\n",
|
102 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /rerank, Methods: POST\n",
|
103 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /v1/rerank, Methods: POST\n",
|
104 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /v2/rerank, Methods: POST\n",
|
105 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /invocations, Methods: POST\n",
|
106 |
+
"INFO 06-07 04:17:03 [launcher.py:36] Route: /metrics, Methods: GET\n"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"name": "stderr",
|
111 |
+
"output_type": "stream",
|
112 |
+
"text": [
|
113 |
+
"INFO: Started server process [13556]\n",
|
114 |
+
"INFO: Waiting for application startup.\n",
|
115 |
+
"INFO: Application startup complete.\n"
|
116 |
+
]
|
117 |
+
}
|
118 |
+
],
|
119 |
+
"source": [
|
120 |
+
"import os\n",
|
121 |
+
"import subprocess\n",
|
122 |
+
"import threading\n",
|
123 |
+
"import time\n",
|
124 |
+
"\n",
|
125 |
+
"# Set environment variable we need to support dual-GPU on Cirrus\n",
|
126 |
+
"os.environ[\"NCCL_P2P_LEVEL\"] = \"NVL\"\n",
|
127 |
+
"\n",
|
128 |
+
"def run_vllm_server():\n",
|
129 |
+
" subprocess.run([\n",
|
130 |
+
" \"vllm\", \"serve\", \"Qwen/Qwen3-32B-AWQ\",\n",
|
131 |
+
" \"--host\", \"0.0.0.0\",\n",
|
132 |
+
" \"--port\", \"8000\",\n",
|
133 |
+
" \"--tensor-parallel-size\", \"2\",\n",
|
134 |
+
" \"--trust-remote-code\",\n",
|
135 |
+
" \"--gpu-memory-utilization\", \"0.4\",\n",
|
136 |
+
" \"--enforce-eager\",\n",
|
137 |
+
" \"--task\", \"embed\"\n",
|
138 |
+
" ])\n",
|
139 |
+
"\n",
|
140 |
+
"# Start server in daemon thread\n",
|
141 |
+
"server_thread = threading.Thread(target=run_vllm_server, daemon=True)\n",
|
142 |
+
"server_thread.start()\n",
|
143 |
+
"\n",
|
144 |
+
"## give server time to start up.\n",
|
145 |
+
"\n",
|
146 |
+
"import time\n",
|
147 |
+
"# Pause execution for 100 seconds\n",
|
148 |
+
"time.sleep(200)"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": null,
|
154 |
+
"id": "9a8397fa-6896-40a5-97d9-1d0c98797b35",
|
155 |
+
"metadata": {},
|
156 |
+
"outputs": [],
|
157 |
+
"source": [
|
158 |
+
"## wait for output above to print routes, ending with: \n",
|
159 |
+
"## INFO: Application startup complete.\n"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 2,
|
165 |
+
"id": "24b64902-1305-43e7-9da8-e4d82d097cb5",
|
166 |
+
"metadata": {},
|
167 |
+
"outputs": [
|
168 |
+
{
|
169 |
+
"name": "stdout",
|
170 |
+
"output_type": "stream",
|
171 |
+
"text": [
|
172 |
+
"INFO 06-07 04:02:50 [logger.py:42] Received request embd-32a68fa8f24a4855b090f66f426e61c4-0: prompt: ' product down', params: PoolingParams(dimensions=None, additional_metadata=None), prompt_token_ids: [1985, 1495], prompt_embeds shape: None, lora_request: None, prompt_adapter_request: None.\n",
|
173 |
+
"INFO 06-07 04:02:50 [engine.py:316] Added request embd-32a68fa8f24a4855b090f66f426e61c4-0.\n",
|
174 |
+
"INFO 06-07 04:02:52 [metrics.py:486] Avg prompt throughput: 0.2 tokens/s, Avg generation throughput: 0.1 tokens/s, Running: 0 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%.\n",
|
175 |
+
"INFO: 127.0.0.1:37090 - \"POST /v1/embeddings HTTP/1.1\" 200 OK\n"
|
176 |
+
]
|
177 |
+
}
|
178 |
+
],
|
179 |
+
"source": [
|
180 |
+
"## NOTE! You must wait until the log above finishes and not just the cell.\n",
|
181 |
+
"## Connect to the local model\n",
|
182 |
+
"from langchain_openai import OpenAIEmbeddings\n",
|
183 |
+
"embedding = OpenAIEmbeddings(\n",
|
184 |
+
" model = \"Qwen/Qwen3-32B-AWQ\",\n",
|
185 |
+
" api_key = \"EMPTY\",\n",
|
186 |
+
" base_url = \"http://localhost:8000/v1\",\n",
|
187 |
+
")\n",
|
188 |
+
"\n",
|
189 |
+
"## test that we can do embeddings\n",
|
190 |
+
"from langchain_core.vectorstores import InMemoryVectorStore\n",
|
191 |
+
"vectorstore = InMemoryVectorStore.from_texts([\"test text\"], embedding=embedding)"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"execution_count": 4,
|
197 |
+
"id": "95ed10f3-5339-40cd-bf16-b0854f8b4b91",
|
198 |
+
"metadata": {},
|
199 |
+
"outputs": [],
|
200 |
+
"source": [
|
201 |
+
"import os\n",
|
202 |
+
"import requests\n",
|
203 |
+
"import zipfile\n",
|
204 |
+
"import pathlib\n",
|
205 |
+
"from langchain_community.document_loaders import PyPDFLoader\n",
|
206 |
+
"\n",
|
207 |
+
"def download_and_unzip(url, output_dir):\n",
|
208 |
+
" response = requests.get(url)\n",
|
209 |
+
" zip_file_path = os.path.basename(url)\n",
|
210 |
+
" with open(zip_file_path, 'wb') as f:\n",
|
211 |
+
" f.write(response.content)\n",
|
212 |
+
" with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:\n",
|
213 |
+
" zip_ref.extractall(output_dir)\n",
|
214 |
+
" os.remove(zip_file_path)\n",
|
215 |
+
"\n",
|
216 |
+
"def pdf_loader(path):\n",
|
217 |
+
" all_documents = []\n",
|
218 |
+
" docs_dir = pathlib.Path(path)\n",
|
219 |
+
" for file in docs_dir.iterdir():\n",
|
220 |
+
" loader = PyPDFLoader(file)\n",
|
221 |
+
" documents = loader.load()\n",
|
222 |
+
" all_documents.extend(documents)\n",
|
223 |
+
" return all_documents\n",
|
224 |
+
"\n",
|
225 |
+
"\n",
|
226 |
+
"download_and_unzip(\"https://minio.carlboettiger.info/public-data/hwc.zip\", 'hwc')\n",
|
227 |
+
"docs = pdf_loader('hwc/')"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"cell_type": "code",
|
232 |
+
"execution_count": 9,
|
233 |
+
"id": "c6e99791-8f34-4722-9708-665e409c26bd",
|
234 |
+
"metadata": {},
|
235 |
+
"outputs": [],
|
236 |
+
"source": [
|
237 |
+
"# Set up the Chat model from one of the NRP models\n",
|
238 |
+
"\n",
|
239 |
+
"import os\n",
|
240 |
+
"api_key = os.getenv(\"OPENAI_API_KEY\")\n",
|
241 |
+
"\n",
|
242 |
+
"# see `curl -H \"Authorization: Bearer $OPENAI_API_KEY\" https://llm.nrp-nautilus.io/v1/models`\n",
|
243 |
+
"models = {\"llama3\": \"llama3-sdsc\", \n",
|
244 |
+
" \"deepseek-small\": \"DeepSeek-R1-Distill-Qwen-32B\",\n",
|
245 |
+
" \"deepseek\": \"deepseek-r1-qwen-qualcomm\",\n",
|
246 |
+
" \"gemma3\": \"gemma3\",\n",
|
247 |
+
" \"phi3\": \"phi3\",\n",
|
248 |
+
" \"olmo\": \"olmo\"\n",
|
249 |
+
" }\n",
|
250 |
+
"\n",
|
251 |
+
"from langchain_openai import ChatOpenAI\n",
|
252 |
+
"llm = ChatOpenAI(model = models[\"gemma3\"], \n",
|
253 |
+
" api_key = api_key, \n",
|
254 |
+
" base_url = \"https://llm.nrp-nautilus.io\", \n",
|
255 |
+
" temperature=0)\n",
|
256 |
+
"\n",
|
257 |
+
"# Embedding model from NRP usually times out.\n",
|
258 |
+
"#embedding = OpenAIEmbeddings(model = \"embed-mistral\", api_key = api_key, base_url = \"https://llm.nrp-nautilus.io\")\n"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "code",
|
263 |
+
"execution_count": null,
|
264 |
+
"id": "95d3e9a3-7334-44ba-a4bc-e7bfc4076358",
|
265 |
+
"metadata": {},
|
266 |
+
"outputs": [],
|
267 |
+
"source": [
|
268 |
+
"# Build a retrival agent\n",
|
269 |
+
"from langchain_core.vectorstores import InMemoryVectorStore\n",
|
270 |
+
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
271 |
+
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
|
272 |
+
"splits = text_splitter.split_documents(docs)"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"cell_type": "code",
|
277 |
+
"execution_count": null,
|
278 |
+
"id": "fd8bcc13-d06d-43dd-9e06-4f29da803133",
|
279 |
+
"metadata": {
|
280 |
+
"scrolled": true
|
281 |
+
},
|
282 |
+
"outputs": [],
|
283 |
+
"source": [
|
284 |
+
"# slow part here, runs on remote GPU\n",
|
285 |
+
"from langchain_core.vectorstores import InMemoryVectorStore\n",
|
286 |
+
"vectorstore = InMemoryVectorStore.from_documents(documents=splits, embedding=embedding)\n",
|
287 |
+
"retriever = vectorstore.as_retriever()"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"execution_count": null,
|
293 |
+
"id": "2bf50abf-5ccd-4de5-9fc4-c9043a66a108",
|
294 |
+
"metadata": {},
|
295 |
+
"outputs": [],
|
296 |
+
"source": [
|
297 |
+
"from langchain.chains import create_retrieval_chain\n",
|
298 |
+
"from langchain.chains.combine_documents import create_stuff_documents_chain\n",
|
299 |
+
"from langchain_core.prompts import ChatPromptTemplate\n",
|
300 |
+
"system_prompt = (\n",
|
301 |
+
" \"You are an assistant for question-answering tasks. \"\n",
|
302 |
+
" \"Use the following pieces of retrieved context to answer \"\n",
|
303 |
+
" \"the question. If you don't know the answer, say that you \"\n",
|
304 |
+
" \"don't know. Use three sentences maximum and keep the \"\n",
|
305 |
+
" \"answer concise.\"\n",
|
306 |
+
" \"\\n\\n\"\n",
|
307 |
+
" \"{context}\"\n",
|
308 |
+
")\n",
|
309 |
+
"prompt = ChatPromptTemplate.from_messages(\n",
|
310 |
+
" [\n",
|
311 |
+
" (\"system\", system_prompt),\n",
|
312 |
+
" (\"human\", \"{input}\"),\n",
|
313 |
+
" ]\n",
|
314 |
+
")\n",
|
315 |
+
"question_answer_chain = create_stuff_documents_chain(llm, prompt)\n",
|
316 |
+
"rag_chain = create_retrieval_chain(retriever, question_answer_chain)\n"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": null,
|
322 |
+
"id": "e15c64e7-0916-4042-8274-870e4fdb1af7",
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [],
|
325 |
+
"source": [
|
326 |
+
"prompt = \"I live in Tanzania and am having issues with lions breaking into my boma and preying on cattle. What interventions might work best for me?\"\n",
|
327 |
+
"results = rag_chain.invoke({\"input\": prompt})\n",
|
328 |
+
"results"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"execution_count": null,
|
334 |
+
"id": "35613607-2c36-4761-a8ea-8c0889530f34",
|
335 |
+
"metadata": {},
|
336 |
+
"outputs": [],
|
337 |
+
"source": [
|
338 |
+
"prompt = \"What are the most cost-effective prevention methods for elephants raiding my crops?\"\n",
|
339 |
+
"\n",
|
340 |
+
"results = rag_chain.invoke({\"input\": prompt})\n",
|
341 |
+
"results"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "code",
|
346 |
+
"execution_count": null,
|
347 |
+
"id": "3dfc39f6-86e9-47c3-ab67-08f90ebbb823",
|
348 |
+
"metadata": {},
|
349 |
+
"outputs": [],
|
350 |
+
"source": [
|
351 |
+
"rag_chain.invoke({\"input\": \n",
|
352 |
+
" \"I have a small herd of goats and cattle and I am worried about jaguars preying on them. What preventative measures can I take?\"\n",
|
353 |
+
" })"
|
354 |
+
]
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"cell_type": "code",
|
358 |
+
"execution_count": null,
|
359 |
+
"id": "56091874-0e41-4b35-be4f-08d8ec6faf56",
|
360 |
+
"metadata": {},
|
361 |
+
"outputs": [],
|
362 |
+
"source": [
|
363 |
+
"rag_chain.invoke({\"input\": \"I am trying to prevent coyotes from eating the calves of my free-range cattle. What may work best?\"})"
|
364 |
+
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"cell_type": "code",
|
368 |
+
"execution_count": null,
|
369 |
+
"id": "918dc691-6c66-46b2-8930-01dbeb6f712b",
|
370 |
+
"metadata": {},
|
371 |
+
"outputs": [],
|
372 |
+
"source": [
|
373 |
+
"rag_chain.invoke({\"input\": \"We have major issues with deer raiding our large agricultural fields. Is there anything I can try to prevent this that won’t break the bank?\"})"
|
374 |
+
]
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"cell_type": "code",
|
378 |
+
"execution_count": null,
|
379 |
+
"id": "07b9578c-9a89-4874-a34d-30a060ed3407",
|
380 |
+
"metadata": {},
|
381 |
+
"outputs": [],
|
382 |
+
"source": [
|
383 |
+
"rag_chain.invoke({\"input\": \"We live in a suburban area and bears sometimes come into our town to eat from our fruit trees and trash. What are the best ways for us to prevent this as a community? We don’t want to have to get rid of our fruit trees…\"})"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "code",
|
388 |
+
"execution_count": null,
|
389 |
+
"id": "ba272b88-1622-4d06-9361-7f1e2ca89e73",
|
390 |
+
"metadata": {},
|
391 |
+
"outputs": [],
|
392 |
+
"source": [
|
393 |
+
"prompt = \"What cattle husbandry strategies might be helpful to prevent conflict if we live in wolf country?\"\n",
|
394 |
+
"\n",
|
395 |
+
"rag_chain.invoke({\"input\": prompt})"
|
396 |
+
]
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"cell_type": "code",
|
400 |
+
"execution_count": null,
|
401 |
+
"id": "9d4d1bf4-4084-430d-8b2d-39ce1d6815db",
|
402 |
+
"metadata": {},
|
403 |
+
"outputs": [],
|
404 |
+
"source": []
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": null,
|
409 |
+
"id": "d4bf2492-6852-43a7-8527-06ee4e9848c0",
|
410 |
+
"metadata": {},
|
411 |
+
"outputs": [],
|
412 |
+
"source": [
|
413 |
+
"## DRAFT exploring other embedding databases\n",
|
414 |
+
"\n",
|
415 |
+
"import os\n",
|
416 |
+
"from langchain_community.vectorstores import FAISS\n",
|
417 |
+
"from langchain_community.vectorstores import Chroma\n",
|
418 |
+
"from langchain_community.vectorstores import Qdrant\n",
|
419 |
+
"from qdrant_client import QdrantClient\n",
|
420 |
+
"from qdrant_client.models import Distance, VectorParams\n",
|
421 |
+
"import gc\n",
|
422 |
+
"import torch\n",
|
423 |
+
"\n",
|
424 |
+
"# Option 1: FAISS (Facebook AI Similarity Search) - Most memory efficient\n",
|
425 |
+
"def create_faiss_vectorstore(splits, embedding, persist_directory=\"./faiss_db\", batch_size=100):\n",
|
426 |
+
" \"\"\"\n",
|
427 |
+
" Create FAISS vector store with batched processing to minimize GPU RAM usage\n",
|
428 |
+
" \"\"\"\n",
|
429 |
+
" os.makedirs(persist_directory, exist_ok=True)\n",
|
430 |
+
" \n",
|
431 |
+
" # Process documents in batches to avoid GPU memory overflow\n",
|
432 |
+
" vectorstore = None\n",
|
433 |
+
" \n",
|
434 |
+
" for i in range(0, len(splits), batch_size):\n",
|
435 |
+
" batch = splits[i:i + batch_size]\n",
|
436 |
+
" print(f\"Processing batch {i//batch_size + 1}/{(len(splits) + batch_size - 1)//batch_size}\")\n",
|
437 |
+
" \n",
|
438 |
+
" if vectorstore is None:\n",
|
439 |
+
" # Create initial vectorstore with first batch\n",
|
440 |
+
" vectorstore = FAISS.from_documents(\n",
|
441 |
+
" documents=batch,\n",
|
442 |
+
" embedding=embedding\n",
|
443 |
+
" )\n",
|
444 |
+
" else:\n",
|
445 |
+
" # Add subsequent batches to existing vectorstore\n",
|
446 |
+
" batch_vectorstore = FAISS.from_documents(\n",
|
447 |
+
" documents=batch,\n",
|
448 |
+
" embedding=embedding\n",
|
449 |
+
" )\n",
|
450 |
+
" vectorstore.merge_from(batch_vectorstore)\n",
|
451 |
+
" \n",
|
452 |
+
" # Clean up temporary vectorstore\n",
|
453 |
+
" del batch_vectorstore\n",
|
454 |
+
" \n",
|
455 |
+
" # Force garbage collection and clear GPU cache if using CUDA\n",
|
456 |
+
" gc.collect()\n",
|
457 |
+
" if torch.cuda.is_available():\n",
|
458 |
+
" torch.cuda.empty_cache()\n",
|
459 |
+
" \n",
|
460 |
+
" # Save to disk\n",
|
461 |
+
" vectorstore.save_local(persist_directory)\n",
|
462 |
+
" print(f\"Vector store saved to {persist_directory}\")\n",
|
463 |
+
" \n",
|
464 |
+
" return vectorstore\n",
|
465 |
+
"\n",
|
466 |
+
"def load_faiss_vectorstore(embedding, persist_directory=\"./faiss_db\"):\n",
|
467 |
+
" \"\"\"Load existing FAISS vector store from disk\"\"\"\n",
|
468 |
+
" return FAISS.load_local(\n",
|
469 |
+
" persist_directory,\n",
|
470 |
+
" embedding,\n",
|
471 |
+
" allow_dangerous_deserialization=True # Only if you trust the source\n",
|
472 |
+
" )\n",
|
473 |
+
"\n",
|
474 |
+
"# Option 2: Chroma - Persistent SQLite-based storage\n",
|
475 |
+
"def create_chroma_vectorstore(splits, embedding, persist_directory=\"./chroma_db\", batch_size=100):\n",
|
476 |
+
" \"\"\"\n",
|
477 |
+
" Create Chroma vector store with batched processing\n",
|
478 |
+
" \"\"\"\n",
|
479 |
+
" # Initialize Chroma with persistence\n",
|
480 |
+
" vectorstore = Chroma(\n",
|
481 |
+
" persist_directory=persist_directory,\n",
|
482 |
+
" embedding_function=embedding\n",
|
483 |
+
" )\n",
|
484 |
+
" \n",
|
485 |
+
" # Add documents in batches\n",
|
486 |
+
" for i in range(0, len(splits), batch_size):\n",
|
487 |
+
" batch = splits[i:i + batch_size]\n",
|
488 |
+
" print(f\"Processing batch {i//batch_size + 1}/{(len(splits) + batch_size - 1)//batch_size}\")\n",
|
489 |
+
" \n",
|
490 |
+
" vectorstore.add_documents(batch)\n",
|
491 |
+
" \n",
|
492 |
+
" # Force garbage collection and clear GPU cache\n",
|
493 |
+
" gc.collect()\n",
|
494 |
+
" if torch.cuda.is_available():\n",
|
495 |
+
" torch.cuda.empty_cache()\n",
|
496 |
+
" \n",
|
497 |
+
" # Persist to disk\n",
|
498 |
+
" vectorstore.persist()\n",
|
499 |
+
" print(f\"Vector store persisted to {persist_directory}\")\n",
|
500 |
+
" \n",
|
501 |
+
" return vectorstore\n",
|
502 |
+
"\n",
|
503 |
+
"def load_chroma_vectorstore(embedding, persist_directory=\"./chroma_db\"):\n",
|
504 |
+
" \"\"\"Load existing Chroma vector store from disk\"\"\"\n",
|
505 |
+
" return Chroma(\n",
|
506 |
+
" persist_directory=persist_directory,\n",
|
507 |
+
" embedding_function=embedding\n",
|
508 |
+
" )\n",
|
509 |
+
"\n",
|
510 |
+
"# Option 3: Qdrant - High-performance vector database\n",
|
511 |
+
"def create_qdrant_vectorstore(splits, embedding, collection_name=\"documents\", \n",
|
512 |
+
" path=\"./qdrant_db\", batch_size=100):\n",
|
513 |
+
" \"\"\"\n",
|
514 |
+
" Create Qdrant vector store with local file-based storage\n",
|
515 |
+
" \"\"\"\n",
|
516 |
+
" # Initialize local Qdrant client\n",
|
517 |
+
" client = QdrantClient(path=path)\n",
|
518 |
+
" \n",
|
519 |
+
" # Get embedding dimension (embed a sample text)\n",
|
520 |
+
" sample_embedding = embedding.embed_query(\"sample text\")\n",
|
521 |
+
" embedding_dim = len(sample_embedding)\n",
|
522 |
+
" \n",
|
523 |
+
" # Create collection if it doesn't exist\n",
|
524 |
+
" try:\n",
|
525 |
+
" client.create_collection(\n",
|
526 |
+
" collection_name=collection_name,\n",
|
527 |
+
" vectors_config=VectorParams(size=embedding_dim, distance=Distance.COSINE)\n",
|
528 |
+
" )\n",
|
529 |
+
" except Exception as e:\n",
|
530 |
+
" print(f\"Collection might already exist: {e}\")\n",
|
531 |
+
" \n",
|
532 |
+
" # Create vectorstore\n",
|
533 |
+
" vectorstore = Qdrant(\n",
|
534 |
+
" client=client,\n",
|
535 |
+
" collection_name=collection_name,\n",
|
536 |
+
" embeddings=embedding\n",
|
537 |
+
" )\n",
|
538 |
+
" \n",
|
539 |
+
" # Add documents in batches\n",
|
540 |
+
" for i in range(0, len(splits), batch_size):\n",
|
541 |
+
" batch = splits[i:i + batch_size]\n",
|
542 |
+
" print(f\"Processing batch {i//batch_size + 1}/{(len(splits) + batch_size - 1)//batch_size}\")\n",
|
543 |
+
" \n",
|
544 |
+
" vectorstore.add_documents(batch)\n",
|
545 |
+
" \n",
|
546 |
+
" # Force garbage collection and clear GPU cache\n",
|
547 |
+
" gc.collect()\n",
|
548 |
+
" if torch.cuda.is_available():\n",
|
549 |
+
" torch.cuda.empty_cache()\n",
|
550 |
+
" \n",
|
551 |
+
" print(f\"Vector store created in {path}\")\n",
|
552 |
+
" return vectorstore\n",
|
553 |
+
"\n",
|
554 |
+
"def load_qdrant_vectorstore(embedding, collection_name=\"documents\", path=\"./qdrant_db\"):\n",
|
555 |
+
" \"\"\"Load existing Qdrant vector store from disk\"\"\"\n",
|
556 |
+
" client = QdrantClient(path=path)\n",
|
557 |
+
" return Qdrant(\n",
|
558 |
+
" client=client,\n",
|
559 |
+
" collection_name=collection_name,\n",
|
560 |
+
" embeddings=embedding\n",
|
561 |
+
" )\n"
|
562 |
+
]
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"cell_type": "code",
|
566 |
+
"execution_count": null,
|
567 |
+
"id": "3cf725ad-69a3-4abd-9907-52427babf6d5",
|
568 |
+
"metadata": {},
|
569 |
+
"outputs": [],
|
570 |
+
"source": [
|
571 |
+
"\n",
|
572 |
+
"# Usage examples:\n",
|
573 |
+
"\n",
|
574 |
+
"# Replace your original code with one of these options:\n",
|
575 |
+
"\n",
|
576 |
+
"# Option 1: FAISS (Recommended for most use cases)\n",
|
577 |
+
"vectorstore = create_faiss_vectorstore(\n",
|
578 |
+
" splits=splits, \n",
|
579 |
+
" embedding=embedding, \n",
|
580 |
+
" persist_directory=\"./my_faiss_db\",\n",
|
581 |
+
" batch_size=50 # Adjust based on your GPU memory\n",
|
582 |
+
")\n",
|
583 |
+
"\n",
|
584 |
+
"# To load later:\n",
|
585 |
+
"# vectorstore = load_faiss_vectorstore(embedding, \"./my_faiss_db\")\n",
|
586 |
+
"\n",
|
587 |
+
"# Option 2: Chroma (Good for development and moderate scale)\n",
|
588 |
+
"# vectorstore = create_chroma_vectorstore(\n",
|
589 |
+
"# splits=splits,\n",
|
590 |
+
"# embedding=embedding,\n",
|
591 |
+
"# persist_directory=\"./my_chroma_db\",\n",
|
592 |
+
"# batch_size=50\n",
|
593 |
+
"# )\n",
|
594 |
+
"\n",
|
595 |
+
"# Option 3: Qdrant (Best for production and very large scale)\n",
|
596 |
+
"# vectorstore = create_qdrant_vectorstore(\n",
|
597 |
+
"# splits=splits,\n",
|
598 |
+
"# embedding=embedding,\n",
|
599 |
+
"# collection_name=\"my_documents\",\n",
|
600 |
+
"# path=\"./my_qdrant_db\",\n",
|
601 |
+
"# batch_size=50\n",
|
602 |
+
"# )\n",
|
603 |
+
"\n",
|
604 |
+
"# Memory optimization settings\n",
|
605 |
+
"def optimize_gpu_memory():\n",
|
606 |
+
" \"\"\"Additional GPU memory optimization\"\"\"\n",
|
607 |
+
" if torch.cuda.is_available():\n",
|
608 |
+
" # Set memory fraction if needed\n",
|
609 |
+
" torch.cuda.set_per_process_memory_fraction(0.8) # Use 80% of GPU memory\n",
|
610 |
+
" \n",
|
611 |
+
" # Enable memory mapping for large tensors\n",
|
612 |
+
" torch.backends.cuda.matmul.allow_tf32 = True\n",
|
613 |
+
" torch.backends.cudnn.allow_tf32 = True\n",
|
614 |
+
"\n",
|
615 |
+
"# Call before processing if you have GPU memory issues\n",
|
616 |
+
"# optimize_gpu_memory()"
|
617 |
+
]
|
618 |
+
}
|
619 |
+
],
|
620 |
+
"metadata": {
|
621 |
+
"kernelspec": {
|
622 |
+
"display_name": "Python 3 (ipykernel)",
|
623 |
+
"language": "python",
|
624 |
+
"name": "python3"
|
625 |
+
},
|
626 |
+
"language_info": {
|
627 |
+
"codemirror_mode": {
|
628 |
+
"name": "ipython",
|
629 |
+
"version": 3
|
630 |
+
},
|
631 |
+
"file_extension": ".py",
|
632 |
+
"mimetype": "text/x-python",
|
633 |
+
"name": "python",
|
634 |
+
"nbconvert_exporter": "python",
|
635 |
+
"pygments_lexer": "ipython3",
|
636 |
+
"version": "3.12.10"
|
637 |
+
}
|
638 |
+
},
|
639 |
+
"nbformat": 4,
|
640 |
+
"nbformat_minor": 5
|
641 |
+
}
|