boyinfuture's picture
feat: Build complete application with all features
c3bf538
import requests
import yfinance as yf
from textblob import TextBlob
import pandas as pd
from datetime import datetime, timedelta
import json
import re
from bs4 import BeautifulSoup
from typing import List, Dict
import time
import urllib.parse
class FreeStockSentimentAnalyzer:
def __init__(self):
"""
Initialize the Free Stock Sentiment Analyzer
Uses only free APIs and web scraping methods
"""
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
})
def get_stock_info(self, symbol: str) -> Dict:
"""
Get basic stock information using yfinance (free)
"""
try:
# Try different suffix combinations for Indian stocks
suffixes_to_try = [
symbol.upper(), # As is (for US stocks)
f"{symbol.upper()}.NS", # NSE
f"{symbol.upper()}.BO", # BSE
]
stock_info = None
working_symbol = None
for test_symbol in suffixes_to_try:
try:
stock = yf.Ticker(test_symbol)
info = stock.info
hist = stock.history(period="1d")
# Check if we got valid data
if not hist.empty or 'symbol' in info or 'shortName' in info:
stock_info = info
working_symbol = test_symbol
# Get current price from history if not in info
if not hist.empty:
current_price = hist['Close'].iloc[-1]
else:
current_price = info.get('currentPrice', info.get('regularMarketPrice', 'N/A'))
break
except Exception as e:
continue
if stock_info:
return {
'symbol': working_symbol,
'name': stock_info.get('longName', stock_info.get('shortName', symbol)),
'sector': stock_info.get('sector', 'N/A'),
'country': stock_info.get('country', 'N/A'),
'currency': stock_info.get('currency', 'N/A'),
'market_cap': stock_info.get('marketCap', 'N/A'),
'current_price': current_price
}
else:
return {
'symbol': symbol,
'name': symbol,
'sector': 'N/A',
'country': 'N/A',
'currency': 'N/A',
'market_cap': 'N/A',
'current_price': 'N/A'
}
except Exception as e:
print(f"Error getting stock info: {e}")
return {
'symbol': symbol,
'name': symbol,
'sector': 'N/A',
'country': 'N/A',
'currency': 'N/A',
'market_cap': 'N/A',
'current_price': 'N/A'
}
def scrape_google_news(self, stock_name: str, company_name: str) -> List[Dict]:
"""
Scrape news from Google News (free method)
"""
try:
# Create search query for Google News
query = f"{company_name} stock news"
encoded_query = urllib.parse.quote(query)
url = f"https://news.google.com/rss/search?q={encoded_query}&hl=en-US&gl=US&ceid=US:en"
response = self.session.get(url, timeout=10)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'xml')
items = soup.find_all('item')
articles = []
for item in items[:15]: # Limit to 15 articles
try:
title = item.find('title').text if item.find('title') else ''
link = item.find('link').text if item.find('link') else ''
pub_date = item.find('pubDate').text if item.find('pubDate') else ''
description = item.find('description').text if item.find('description') else ''
source = item.find('source').text if item.find('source') else 'Google News'
articles.append({
'title': title,
'description': BeautifulSoup(description, 'html.parser').get_text()[:200] if description else '',
'url': link,
'published_at': pub_date,
'source': source,
})
except Exception as e:
continue
return articles
else:
print(f"Google News scraping failed: {response.status_code}")
return []
except Exception as e:
print(f"Error scraping Google News: {e}")
return []
def scrape_yahoo_news(self, symbol: str) -> List[Dict]:
"""
Scrape news from Yahoo Finance (free method)
"""
try:
# Try different symbol formats
symbols_to_try = [symbol, f"{symbol}.NS", f"{symbol}.BO"]
articles = []
for test_symbol in symbols_to_try:
try:
stock = yf.Ticker(test_symbol)
news = stock.news
for article in news[:10]: # Limit to 10 articles per symbol
articles.append({
'title': article.get('title', ''),
'description': article.get('summary', ''),
'url': article.get('link', ''),
'published_at': datetime.fromtimestamp(article.get('providerPublishTime', 0)).strftime('%Y-%m-%d %H:%M:%S') if article.get('providerPublishTime') else '',
'source': article.get('publisher', 'Yahoo Finance'),
})
if articles: # If we found articles, stop trying other symbols
break
except Exception as e:
continue
return articles
except Exception as e:
print(f"Error scraping Yahoo News: {e}")
return []
def scrape_reddit_mentions(self, stock_name: str, company_name: str) -> List[Dict]:
"""
Scrape Reddit mentions using Reddit's JSON API (free)
"""
try:
# Search multiple subreddits
subreddits = ['stocks', 'investing', 'SecurityAnalysis', 'StockMarket', 'ValueInvesting']
mentions = []
for subreddit in subreddits:
try:
# Search for posts mentioning the stock
search_url = f"https://www.reddit.com/r/{subreddit}/search.json"
params = {
'q': f"{stock_name} OR {company_name}",
'sort': 'new',
'limit': 10,
'restrict_sr': 'true'
}
response = self.session.get(search_url, params=params, timeout=10)
if response.status_code == 200:
data = response.json()
posts = data.get('data', {}).get('children', [])
for post in posts:
post_data = post.get('data', {})
mentions.append({
'title': post_data.get('title', ''),
'text': post_data.get('selftext', ''),
'url': f"https://reddit.com{post_data.get('permalink', '')}",
'score': post_data.get('score', 0),
'created_at': datetime.fromtimestamp(post_data.get('created_utc', 0)).strftime('%Y-%m-%d %H:%M:%S'),
'subreddit': subreddit,
'author': post_data.get('author', 'Unknown'),
'num_comments': post_data.get('num_comments', 0)
})
time.sleep(1) # Be respectful to Reddit's servers
except Exception as e:
print(f"Error scraping r/{subreddit}: {e}")
continue
return mentions[:20] # Return top 20 mentions
except Exception as e:
print(f"Error scraping Reddit: {e}")
return []
def get_free_twitter_alternative(self, stock_name: str, company_name: str) -> List[Dict]:
"""
Get social media mentions from free sources (alternative to Twitter API)
This is a placeholder for free social media data sources
"""
try:
# Using Reddit as Twitter alternative since Twitter API is no longer free
print("Note: Using Reddit data as Twitter alternative (Twitter API no longer free)")
return self.scrape_reddit_mentions(stock_name, company_name)
except Exception as e:
print(f"Error getting social media data: {e}")
return []
def analyze_sentiment(self, text: str) -> Dict[str, float]:
"""
Analyze sentiment using TextBlob (free library)
"""
try:
if not text or text.strip() == '':
return {'polarity': 0.0, 'subjectivity': 0.0, 'sentiment_label': 'Neutral'}
blob = TextBlob(text)
polarity = blob.sentiment.polarity # -1 (negative) to 1 (positive)
subjectivity = blob.sentiment.subjectivity # 0 (objective) to 1 (subjective)
# Determine sentiment label
if polarity > 0.1:
sentiment_label = 'Positive'
elif polarity < -0.1:
sentiment_label = 'Negative'
else:
sentiment_label = 'Neutral'
return {
'polarity': round(polarity, 3),
'subjectivity': round(subjectivity, 3),
'sentiment_label': sentiment_label
}
except Exception as e:
print(f"Error analyzing sentiment: {e}")
return {'polarity': 0.0, 'subjectivity': 0.0, 'sentiment_label': 'Neutral'}
def calculate_overall_sentiment(self, articles: List[Dict]) -> Dict:
"""
Calculate overall sentiment from all articles/posts
"""
if not articles:
return {
'overall_sentiment': 'Neutral',
'average_polarity': 0.0,
'positive_count': 0,
'negative_count': 0,
'neutral_count': 0,
'total_articles': 0
}
polarities = []
sentiment_counts = {'Positive': 0, 'Negative': 0, 'Neutral': 0}
for article in articles:
if 'sentiment' in article:
polarity = article['sentiment']['polarity']
sentiment_label = article['sentiment']['sentiment_label']
polarities.append(polarity)
sentiment_counts[sentiment_label] += 1
if polarities:
avg_polarity = sum(polarities) / len(polarities)
if avg_polarity > 0.05:
overall_sentiment = 'Positive'
elif avg_polarity < -0.05:
overall_sentiment = 'Negative'
else:
overall_sentiment = 'Neutral'
else:
avg_polarity = 0.0
overall_sentiment = 'Neutral'
return {
'overall_sentiment': overall_sentiment,
'average_polarity': round(avg_polarity, 3),
'positive_count': sentiment_counts['Positive'],
'negative_count': sentiment_counts['Negative'],
'neutral_count': sentiment_counts['Neutral'],
'total_articles': len(articles)
}
def analyze_stock(self, symbol: str) -> Dict:
"""
Main function to analyze a stock comprehensively
"""
print(f"Analyzing stock: {symbol}")
print("=" * 50)
# Get stock information
print("Fetching stock information...")
stock_info = self.get_stock_info(symbol)
company_name = stock_info['name']
stock_symbol = stock_info['symbol']
print(f"Company: {company_name}")
print(f"Symbol: {stock_symbol}")
# Collect all news and social media data
all_articles = []
# Get news from different sources
print("\nFetching news from Google News...")
google_news = self.scrape_google_news(symbol, company_name)
all_articles.extend(google_news)
print("Fetching news from Yahoo Finance...")
yahoo_news = self.scrape_yahoo_news(symbol)
all_articles.extend(yahoo_news)
print("Fetching social media mentions...")
social_mentions = self.get_free_twitter_alternative(symbol, company_name)
all_articles.extend(social_mentions)
# Analyze sentiment for each article
print(f"\nAnalyzing sentiment for {len(all_articles)} items...")
for article in all_articles:
text_to_analyze = ""
# Combine title and description/text for sentiment analysis
if 'title' in article and article['title']:
text_to_analyze += article['title'] + " "
if 'description' in article and article['description']:
text_to_analyze += article['description']
elif 'text' in article and article['text']:
text_to_analyze += article['text']
article['sentiment'] = self.analyze_sentiment(text_to_analyze)
# Calculate overall sentiment
overall_sentiment = self.calculate_overall_sentiment(all_articles)
# Compile results
results = {
'stock_info': stock_info,
'analysis_timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'total_items_analyzed': len(all_articles),
'news_articles': [article for article in all_articles if 'subreddit' not in article],
'social_media_mentions': [article for article in all_articles if 'subreddit' in article],
'sentiment_analysis': overall_sentiment,
'articles_with_sentiment': all_articles
}
return results
def print_results(self, results: Dict):
"""
Print formatted results
"""
print("\n" + "="*80)
print("STOCK SENTIMENT ANALYSIS REPORT")
print("="*80)
# Stock Information
stock_info = results['stock_info']
print(f"\n๐Ÿ“Š STOCK INFORMATION:")
print(f" Symbol: {stock_info['symbol']}")
print(f" Company: {stock_info['name']}")
print(f" Sector: {stock_info['sector']}")
print(f" Country: {stock_info['country']}")
print(f" Current Price: {stock_info['current_price']} {stock_info['currency']}")
print(f" Market Cap: {stock_info['market_cap']}")
# Sentiment Summary
sentiment = results['sentiment_analysis']
print(f"\n๐ŸŽฏ SENTIMENT ANALYSIS SUMMARY:")
print(f" Overall Sentiment: {sentiment['overall_sentiment']}")
print(f" Average Polarity: {sentiment['average_polarity']}")
print(f" Positive Articles: {sentiment['positive_count']}")
print(f" Negative Articles: {sentiment['negative_count']}")
print(f" Neutral Articles: {sentiment['neutral_count']}")
print(f" Total Items Analyzed: {sentiment['total_articles']}")
# Recent News
news_articles = results['news_articles']
if news_articles:
print(f"\n๐Ÿ“ฐ LATEST NEWS ({len(news_articles)} articles):")
for i, article in enumerate(news_articles[:5], 1):
sentiment_info = article.get('sentiment', {})
print(f"\n {i}. {article['title'][:80]}...")
print(f" Source: {article['source']}")
print(f" Sentiment: {sentiment_info.get('sentiment_label', 'N/A')} "
f"(Polarity: {sentiment_info.get('polarity', 'N/A')})")
print(f" URL: {article['url']}")
# Social Media Mentions
social_mentions = results['social_media_mentions']
if social_mentions:
print(f"\n๐Ÿ’ฌ SOCIAL MEDIA MENTIONS ({len(social_mentions)} mentions):")
for i, mention in enumerate(social_mentions[:5], 1):
sentiment_info = mention.get('sentiment', {})
print(f"\n {i}. r/{mention.get('subreddit', 'unknown')}: {mention['title'][:60]}...")
print(f" Score: {mention.get('score', 0)} | Comments: {mention.get('num_comments', 0)}")
print(f" Sentiment: {sentiment_info.get('sentiment_label', 'N/A')} "
f"(Polarity: {sentiment_info.get('polarity', 'N/A')})")
print(f"\nโฐ Analysis completed at: {results['analysis_timestamp']}")
print("="*80)
# Example usage and main function
def main():
"""
Main function to run the stock sentiment analyzer
"""
analyzer = FreeStockSentimentAnalyzer()
while True:
print("\n๐Ÿ” Free Stock Sentiment Analyzer")
print("-" * 40)
stock_symbol = input("Enter stock symbol (e.g., RELIANCE, AAPL, TCS): ").strip()
if not stock_symbol:
print("Please enter a valid stock symbol.")
continue
if stock_symbol.lower() in ['quit', 'exit', 'q']:
print("Goodbye!")
break
try:
# Analyze the stock
results = analyzer.analyze_stock(stock_symbol)
# Print results
analyzer.print_results(results)
# Ask if user wants to save results
save_option = input("\nWould you like to save results to JSON file? (y/n): ").strip().lower()
if save_option == 'y':
filename = f"{stock_symbol}_sentiment_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
with open(filename, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"Results saved to {filename}")
except Exception as e:
print(f"Error analyzing stock {stock_symbol}: {e}")
# Ask if user wants to analyze another stock
continue_option = input("\nAnalyze another stock? (y/n): ").strip().lower()
if continue_option != 'y':
print("Thank you for using Stock Sentiment Analyzer!")
break
if __name__ == "__main__":
print("Welcome to Free Stock Sentiment Analyzer!")
print("\nRequired Python packages:")
print("pip install yfinance textblob pandas beautifulsoup4 requests lxml")
print("\nNote: This tool uses free APIs and web scraping methods only.")
print("For Twitter data, we use Reddit as an alternative since Twitter API is no longer free.")
try:
main()
except KeyboardInterrupt:
print("\n\nProgram interrupted. Goodbye!")
except Exception as e:
print(f"An unexpected error occurred: {e}")