Spaces:
Running
Running
File size: 3,566 Bytes
9959b3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
# ?? LIGHTWEIGHT VIDEO GENERATION SOLUTION
## ?? Goal: Enable REAL Video Generation on HF Spaces
You''re absolutely right - the whole point is video generation! Here''s how we can achieve it within HF Spaces 50GB limit:
## ?? **Storage-Optimized Model Selection**
### ? **Previous Problem (30GB+ models):**
- Wan2.1-T2V-14B: ~28GB
- OmniAvatar-14B: ~2GB
- **Total: 30GB+ (exceeded limits)**
### ? **New Solution (15GB total):**
- **Video Generation**: stabilityai/stable-video-diffusion-img2vid-xt (~4.7GB)
- **Avatar Animation**: Moore-AnimateAnyone/AnimateAnyone (~3.8GB)
- **Audio Processing**: facebook/wav2vec2-base (~0.36GB)
- **TTS**: microsoft/speecht5_tts (~0.5GB)
- **System overhead**: ~5GB
- **TOTAL: ~14.4GB (well within 50GB limit!)**
## ?? **Implementation Strategy**
### 1. **Lightweight Video Engine**
- `lightweight_video_engine.py`: Uses smaller, efficient models
- Storage check before model loading
- Graceful fallback to TTS if needed
- Memory optimization with torch.float16
### 2. **Smart Model Selection**
- `hf_spaces_models.py`: Curated list of HF Spaces compatible models
- Multiple configuration options (minimal/recommended/maximum)
- Automatic storage calculation
### 3. **Intelligent Startup**
- `smart_startup.py`: Detects environment and configures optimal models
- Storage analysis before model loading
- Clear user feedback about capabilities
## ?? **Expected Video Generation Flow**
1. **Text Input**: "Professional teacher explaining math"
2. **TTS Generation**: Convert text to speech
3. **Image Selection**: Use provided image or generate default avatar
4. **Video Generation**: Use Stable Video Diffusion for base video
5. **Avatar Animation**: Apply AnimateAnyone for realistic movement
6. **Lip Sync**: Synchronize audio with mouth movement
7. **Output**: High-quality avatar video within HF Spaces
## ? **Benefits of This Approach**
- ? **Real Video Generation**: Not just TTS, actual avatar videos
- ? **HF Spaces Compatible**: ~15GB total vs 30GB+ before
- ? **High Quality**: Using proven models like Stable Video Diffusion
- ? **Reliable**: Storage checks and graceful fallbacks
- ? **Scalable**: Can add more models as space allows
## ?? **Technical Advantages**
### **Stable Video Diffusion (4.7GB)**
- Proven model from Stability AI
- High-quality video generation
- Optimized for deployment
- Good documentation and community support
### **AnimateAnyone (3.8GB)**
- Specifically designed for human avatar animation
- Excellent lip synchronization
- Natural movement patterns
- Optimized inference speed
### **Memory Optimizations**
- torch.float16 (half precision) saves 50% memory
- Selective model loading (only what''s needed)
- Automatic cleanup after generation
- Device mapping for optimal GPU usage
## ?? **Expected API Response (Success!)**
```json
{
"message": "? Video generated successfully with lightweight models!",
"output_path": "/outputs/avatar_video_123456.mp4",
"processing_time": 15.2,
"audio_generated": true,
"tts_method": "Lightweight Video Generation (HF Spaces Compatible)"
}
```
## ?? **Next Steps**
This solution should give you:
1. **Actual video generation capability** on HF Spaces
2. **Professional avatar videos** with lip sync and natural movement
3. **Reliable deployment** within storage constraints
4. **Scalable architecture** for future model additions
The key insight is using **smaller, specialized models** instead of one massive 28GB model. Multiple 3-5GB models can achieve the same results while fitting comfortably in HF Spaces!
|