FROM python:3.10-slim # Set working directory WORKDIR /app # Install system dependencies needed for video generation RUN apt-get update && apt-get install -y \ git \ git-lfs \ ffmpeg \ libsndfile1 \ build-essential \ curl \ && rm -rf /var/lib/apt/lists/* # Initialize git-lfs for large file support RUN git lfs install # Upgrade pip and install build tools first RUN pip install --upgrade pip setuptools wheel # Create necessary directories with proper permissions for HF Spaces RUN mkdir -p /tmp/gradio_flagged \ /tmp/matplotlib \ /tmp/huggingface \ /tmp/huggingface/transformers \ /tmp/huggingface/datasets \ /tmp/huggingface/hub \ /app/outputs \ /app/pretrained_models \ /app/configs \ /app/scripts \ /app/examples \ && chmod -R 777 /tmp \ && chmod -R 777 /app/outputs \ && chmod -R 777 /app/pretrained_models # Copy requirements first for better caching COPY requirements.txt . # Install Python dependencies with increased timeout for video packages RUN pip install --no-cache-dir --timeout=1000 --retries=3 -r requirements.txt # Copy application code COPY . . # Set environment variables optimized for video generation ENV PYTHONPATH=/app ENV PYTHONUNBUFFERED=1 ENV MPLCONFIGDIR=/tmp/matplotlib ENV GRADIO_ALLOW_FLAGGING=never ENV HF_HOME=/tmp/huggingface ENV HF_DATASETS_CACHE=/tmp/huggingface/datasets ENV HUGGINGFACE_HUB_CACHE=/tmp/huggingface/hub # Optimize for video generation ENV TORCH_HOME=/tmp/torch ENV CUDA_VISIBLE_DEVICES=0 # Create gradio temp directory RUN mkdir -p /tmp/gradio && chmod -R 777 /tmp/gradio ENV GRADIO_TEMP_DIR=/tmp/gradio # Expose port (HuggingFace Spaces uses 7860) EXPOSE 7860 # Health check optimized for video generation app HEALTHCHECK --interval=30s --timeout=30s --start-period=120s --retries=3 \ CMD curl -f http://localhost:7860/health || exit 1 # Run the video generation application CMD ["python", "app.py"]