faq-huggingface-model / src /kaggle_loader.py
brendon-ai's picture
Update src/kaggle_loader.py
e7ee502 verified
import os
import pandas as pd
import json
from typing import List, Optional
from langchain_core.documents import Document
from langchain_community.document_loaders import CSVLoader, JSONLoader
import kaggle
class KaggleDataLoader:
"""Load and process Kaggle datasets for RAG."""
def __init__(self, kaggle_username: Optional[str] = None, kaggle_key: Optional[str] = None):
"""
Initialize Kaggle loader.
Args:
kaggle_username: Your Kaggle username (optional if using kaggle.json)
kaggle_key: Your Kaggle API key (optional if using kaggle.json)
"""
self.kaggle_username = kaggle_username
self.kaggle_key = kaggle_key
# Try to load credentials from kaggle.json first
self._load_kaggle_credentials()
# Set Kaggle credentials (either from kaggle.json or parameters)
if self.kaggle_username and self.kaggle_key:
os.environ['KAGGLE_USERNAME'] = self.kaggle_username
os.environ['KAGGLE_KEY'] = self.kaggle_key
print("Kaggle credentials loaded successfully")
else:
print("Warning: No Kaggle credentials found. Please set up kaggle.json or provide credentials.")
def _load_kaggle_credentials(self):
"""Load Kaggle credentials from kaggle.json file."""
# Common locations for kaggle.json
possible_paths = [
os.path.expanduser("~/.kaggle/kaggle.json"),
os.path.expanduser("~/kaggle.json"),
"./kaggle.json",
os.path.join(os.getcwd(), "kaggle.json")
]
for path in possible_paths:
if os.path.exists(path):
try:
with open(path, 'r') as f:
credentials = json.load(f)
# Extract username and key from kaggle.json
if 'username' in credentials and 'key' in credentials:
self.kaggle_username = credentials['username']
self.kaggle_key = credentials['key']
print(f"Loaded Kaggle credentials from {path}")
return
else:
print(f"Invalid kaggle.json format at {path}. Expected 'username' and 'key' fields.")
except Exception as e:
print(f"Error reading kaggle.json from {path}: {e}")
print("No valid kaggle.json found in common locations:")
for path in possible_paths:
print(f" - {path}")
print("Please create kaggle.json with your Kaggle API credentials.")
def download_dataset(self, dataset_name: str, download_path: str = "./data") -> str:
"""
Download a Kaggle dataset.
Args:
dataset_name: Dataset name in format 'username/dataset-name'
download_path: Where to save the dataset
Returns:
Path to downloaded dataset
"""
if not self.kaggle_username or not self.kaggle_key:
raise ValueError("Kaggle credentials not found. Please set up kaggle.json or provide credentials.")
try:
# Create a unique directory for this dataset
dataset_dir = dataset_name.replace('/', '_')
full_download_path = os.path.join(download_path, dataset_dir)
# Create the directory if it doesn't exist
os.makedirs(full_download_path, exist_ok=True)
kaggle.api.authenticate()
kaggle.api.dataset_download_files(dataset_name, path=full_download_path, unzip=True)
print(f"Dataset {dataset_name} downloaded successfully to {full_download_path}")
return full_download_path
except Exception as e:
print(f"Error downloading dataset: {e}")
raise
def load_csv_dataset(self, file_path: str, text_columns: List[str], chunk_size: int = 100) -> List[Document]:
"""Load documents from a CSV file."""
try:
df = pd.read_csv(file_path)
documents = []
# For FAQ datasets, try to combine question and answer columns
if 'Questions' in df.columns and 'Answers' in df.columns:
print(f"Processing FAQ dataset with {len(df)} Q&A pairs")
for idx, row in df.iterrows():
question = str(row['Questions']).strip()
answer = str(row['Answers']).strip()
# Create a document with question prominently featured for better retrieval
content = f"QUESTION: {question}\n\nANSWER: {answer}"
documents.append(Document(
page_content=content,
metadata={"source": file_path, "type": "faq", "question_id": idx, "question": question}
))
else:
# Fallback to original method for other CSV files
print(f"Processing regular CSV with columns: {text_columns}")
for idx, row in df.iterrows():
# Combine specified text columns
text_parts = []
for col in text_columns:
if col in df.columns and pd.notna(row[col]):
text_parts.append(str(row[col]).strip())
if text_parts:
content = " ".join(text_parts)
documents.append(Document(
page_content=content,
metadata={"source": file_path, "row": idx}
))
print(f"Created {len(documents)} documents from CSV")
return documents
except Exception as e:
print(f"Error loading CSV dataset: {e}")
return []
def load_json_dataset(self, file_path: str, text_field: str = "text",
metadata_fields: Optional[List[str]] = None) -> List[Document]:
"""
Load JSON data and convert to documents.
Args:
file_path: Path to JSON file
text_field: Field name containing the main text
metadata_fields: Fields to include as metadata
Returns:
List of Document objects
"""
with open(file_path, 'r') as f:
data = json.load(f)
documents = []
for item in data:
text_content = item.get(text_field, "")
# Create metadata
metadata = {"source": file_path}
if metadata_fields:
for field in metadata_fields:
if field in item:
metadata[field] = item[field]
documents.append(Document(
page_content=text_content,
metadata=metadata
))
return documents
def load_text_dataset(self, file_path: str, chunk_size: int = 1000) -> List[Document]:
"""
Load plain text data and convert to documents.
Args:
file_path: Path to text file
chunk_size: Number of characters per document
Returns:
List of Document objects
"""
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
documents = []
for i in range(0, len(text), chunk_size):
chunk = text[i:i+chunk_size]
documents.append(Document(
page_content=chunk,
metadata={
"source": file_path,
"chunk_id": i // chunk_size,
"start_char": i,
"end_char": min(i + chunk_size, len(text))
}
))
return documents
# Example usage functions
def load_kaggle_csv_example():
"""Example: Load a CSV dataset from Kaggle."""
# Initialize loader (replace with your credentials)
loader = KaggleDataLoader("your_username", "your_api_key")
# Download dataset (example: COVID-19 dataset)
dataset_path = loader.download_dataset("gpreda/covid-world-vaccination-progress")
# Load CSV data
csv_file = os.path.join(dataset_path, "country_vaccinations.csv")
documents = loader.load_csv_dataset(
csv_file,
text_columns=["country", "vaccines", "source_name"],
chunk_size=100
)
return documents
def load_kaggle_json_example():
"""Example: Load a JSON dataset from Kaggle."""
loader = KaggleDataLoader("your_username", "your_api_key")
# Download dataset (example: news articles)
dataset_path = loader.download_dataset("rmisra/news-category-dataset")
# Load JSON data
json_file = os.path.join(dataset_path, "News_Category_Dataset_v3.json")
documents = loader.load_json_dataset(
json_file,
text_field="headline",
metadata_fields=["category", "date"]
)
return documents