|
import os |
|
import pandas as pd |
|
import json |
|
from typing import List, Optional |
|
from langchain_core.documents import Document |
|
from langchain_community.document_loaders import CSVLoader, JSONLoader |
|
import kaggle |
|
|
|
class KaggleDataLoader: |
|
"""Load and process Kaggle datasets for RAG.""" |
|
|
|
def __init__(self, kaggle_username: Optional[str] = None, kaggle_key: Optional[str] = None): |
|
""" |
|
Initialize Kaggle loader. |
|
|
|
Args: |
|
kaggle_username: Your Kaggle username (optional if using kaggle.json) |
|
kaggle_key: Your Kaggle API key (optional if using kaggle.json) |
|
""" |
|
self.kaggle_username = kaggle_username |
|
self.kaggle_key = kaggle_key |
|
|
|
|
|
self._load_kaggle_credentials() |
|
|
|
|
|
if self.kaggle_username and self.kaggle_key: |
|
os.environ['KAGGLE_USERNAME'] = self.kaggle_username |
|
os.environ['KAGGLE_KEY'] = self.kaggle_key |
|
print("Kaggle credentials loaded successfully") |
|
else: |
|
print("Warning: No Kaggle credentials found. Please set up kaggle.json or provide credentials.") |
|
|
|
def _load_kaggle_credentials(self): |
|
"""Load Kaggle credentials from kaggle.json file.""" |
|
|
|
possible_paths = [ |
|
os.path.expanduser("~/.kaggle/kaggle.json"), |
|
os.path.expanduser("~/kaggle.json"), |
|
"./kaggle.json", |
|
os.path.join(os.getcwd(), "kaggle.json") |
|
] |
|
|
|
for path in possible_paths: |
|
if os.path.exists(path): |
|
try: |
|
with open(path, 'r') as f: |
|
credentials = json.load(f) |
|
|
|
|
|
if 'username' in credentials and 'key' in credentials: |
|
self.kaggle_username = credentials['username'] |
|
self.kaggle_key = credentials['key'] |
|
print(f"Loaded Kaggle credentials from {path}") |
|
return |
|
else: |
|
print(f"Invalid kaggle.json format at {path}. Expected 'username' and 'key' fields.") |
|
|
|
except Exception as e: |
|
print(f"Error reading kaggle.json from {path}: {e}") |
|
|
|
print("No valid kaggle.json found in common locations:") |
|
for path in possible_paths: |
|
print(f" - {path}") |
|
print("Please create kaggle.json with your Kaggle API credentials.") |
|
|
|
def download_dataset(self, dataset_name: str, download_path: str = "./data") -> str: |
|
""" |
|
Download a Kaggle dataset. |
|
|
|
Args: |
|
dataset_name: Dataset name in format 'username/dataset-name' |
|
download_path: Where to save the dataset |
|
|
|
Returns: |
|
Path to downloaded dataset |
|
""" |
|
if not self.kaggle_username or not self.kaggle_key: |
|
raise ValueError("Kaggle credentials not found. Please set up kaggle.json or provide credentials.") |
|
|
|
try: |
|
|
|
dataset_dir = dataset_name.replace('/', '_') |
|
full_download_path = os.path.join(download_path, dataset_dir) |
|
|
|
|
|
os.makedirs(full_download_path, exist_ok=True) |
|
|
|
kaggle.api.authenticate() |
|
kaggle.api.dataset_download_files(dataset_name, path=full_download_path, unzip=True) |
|
print(f"Dataset {dataset_name} downloaded successfully to {full_download_path}") |
|
return full_download_path |
|
except Exception as e: |
|
print(f"Error downloading dataset: {e}") |
|
raise |
|
|
|
def load_csv_dataset(self, file_path: str, text_columns: List[str], chunk_size: int = 100) -> List[Document]: |
|
"""Load documents from a CSV file.""" |
|
try: |
|
df = pd.read_csv(file_path) |
|
documents = [] |
|
|
|
|
|
if 'Questions' in df.columns and 'Answers' in df.columns: |
|
print(f"Processing FAQ dataset with {len(df)} Q&A pairs") |
|
for idx, row in df.iterrows(): |
|
question = str(row['Questions']).strip() |
|
answer = str(row['Answers']).strip() |
|
|
|
|
|
content = f"QUESTION: {question}\n\nANSWER: {answer}" |
|
documents.append(Document( |
|
page_content=content, |
|
metadata={"source": file_path, "type": "faq", "question_id": idx, "question": question} |
|
)) |
|
else: |
|
|
|
print(f"Processing regular CSV with columns: {text_columns}") |
|
for idx, row in df.iterrows(): |
|
|
|
text_parts = [] |
|
for col in text_columns: |
|
if col in df.columns and pd.notna(row[col]): |
|
text_parts.append(str(row[col]).strip()) |
|
|
|
if text_parts: |
|
content = " ".join(text_parts) |
|
documents.append(Document( |
|
page_content=content, |
|
metadata={"source": file_path, "row": idx} |
|
)) |
|
|
|
print(f"Created {len(documents)} documents from CSV") |
|
return documents |
|
|
|
except Exception as e: |
|
print(f"Error loading CSV dataset: {e}") |
|
return [] |
|
|
|
def load_json_dataset(self, file_path: str, text_field: str = "text", |
|
metadata_fields: Optional[List[str]] = None) -> List[Document]: |
|
""" |
|
Load JSON data and convert to documents. |
|
|
|
Args: |
|
file_path: Path to JSON file |
|
text_field: Field name containing the main text |
|
metadata_fields: Fields to include as metadata |
|
|
|
Returns: |
|
List of Document objects |
|
""" |
|
with open(file_path, 'r') as f: |
|
data = json.load(f) |
|
|
|
documents = [] |
|
|
|
for item in data: |
|
text_content = item.get(text_field, "") |
|
|
|
|
|
metadata = {"source": file_path} |
|
if metadata_fields: |
|
for field in metadata_fields: |
|
if field in item: |
|
metadata[field] = item[field] |
|
|
|
documents.append(Document( |
|
page_content=text_content, |
|
metadata=metadata |
|
)) |
|
|
|
return documents |
|
|
|
def load_text_dataset(self, file_path: str, chunk_size: int = 1000) -> List[Document]: |
|
""" |
|
Load plain text data and convert to documents. |
|
|
|
Args: |
|
file_path: Path to text file |
|
chunk_size: Number of characters per document |
|
|
|
Returns: |
|
List of Document objects |
|
""" |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
text = f.read() |
|
|
|
documents = [] |
|
|
|
for i in range(0, len(text), chunk_size): |
|
chunk = text[i:i+chunk_size] |
|
|
|
documents.append(Document( |
|
page_content=chunk, |
|
metadata={ |
|
"source": file_path, |
|
"chunk_id": i // chunk_size, |
|
"start_char": i, |
|
"end_char": min(i + chunk_size, len(text)) |
|
} |
|
)) |
|
|
|
return documents |
|
|
|
|
|
def load_kaggle_csv_example(): |
|
"""Example: Load a CSV dataset from Kaggle.""" |
|
|
|
loader = KaggleDataLoader("your_username", "your_api_key") |
|
|
|
|
|
dataset_path = loader.download_dataset("gpreda/covid-world-vaccination-progress") |
|
|
|
|
|
csv_file = os.path.join(dataset_path, "country_vaccinations.csv") |
|
documents = loader.load_csv_dataset( |
|
csv_file, |
|
text_columns=["country", "vaccines", "source_name"], |
|
chunk_size=100 |
|
) |
|
|
|
return documents |
|
|
|
def load_kaggle_json_example(): |
|
"""Example: Load a JSON dataset from Kaggle.""" |
|
loader = KaggleDataLoader("your_username", "your_api_key") |
|
|
|
|
|
dataset_path = loader.download_dataset("rmisra/news-category-dataset") |
|
|
|
|
|
json_file = os.path.join(dataset_path, "News_Category_Dataset_v3.json") |
|
documents = loader.load_json_dataset( |
|
json_file, |
|
text_field="headline", |
|
metadata_fields=["category", "date"] |
|
) |
|
|
|
return documents |