brestok's picture
add ner
150c3f8
import base64
import io
import re
import pytesseract
from PIL import Image
from flair.data import Sentence
from pdf2image import convert_from_bytes
from ocr.core.config import settings
def divide_images(contents: bytes) -> list[bytes]:
images = convert_from_bytes(contents, dpi=250)
image_bytes_list = []
for image in images:
img_byte_array = io.BytesIO()
image.save(img_byte_array, format='PNG')
img_byte_array.seek(0)
image_bytes_list.append(img_byte_array.read())
return image_bytes_list
def extract_text_from_images(images: list[bytes]) -> str:
extracted_texts = []
for image_bytes in images:
image = Image.open(io.BytesIO(image_bytes))
text = pytesseract.image_to_string(image)
extracted_texts.append(text)
return '\n'.join(extracted_texts)
def prepare_request_content(images: list[bytes]) -> list:
content = [
{"type": "text", "text": "Generate a report on the attached document"},
*[
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64.b64encode(image).decode('utf-8')}",
},
}
for image in images
]
]
return content
def clean_response(text: str) -> str:
try:
text = re.search(r'```markdown\s*(.*?)\s*```', text, re.DOTALL).group(1)
except Exception as e:
pass
return text
def clean_text(text: str) -> str:
sentence = Sentence(text)
settings.TAGGER.predict(sentence)
per_entities = [entity for entity in sentence.get_spans('ner') if entity.tag == 'PER']
per_entities = sorted(per_entities, key=lambda x: x.start_position, reverse=True)
cleaned_text = text
for entity in per_entities:
start = entity.start_position
end = entity.end_position
cleaned_text = cleaned_text[:start] + cleaned_text[end:]
return cleaned_text