Spaces:
Sleeping
Sleeping
File size: 10,678 Bytes
b7253fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class Identity(nn.Module):
"""Identity Module."""
def __init__(self):
super().__init__()
def forward(self, x):
return x
class Squeeze(nn.Module):
"""Squeeze Module."""
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
return x.squeeze(self.dim)
class SuperLinear(nn.Module):
"""SuperLinear Layer: Implements Neuron-Level Models (NLMs) for the CTM."""
def __init__(self, in_dims, out_dims, N):
super().__init__()
self.in_dims = in_dims
self.register_parameter('w1', nn.Parameter(
torch.empty((in_dims, out_dims, N)).uniform_(
-1/math.sqrt(in_dims + out_dims),
1/math.sqrt(in_dims + out_dims)
), requires_grad=True)
)
self.register_parameter('b1', nn.Parameter(torch.zeros((1, N, out_dims)), requires_grad=True))
def forward(self, x):
out = torch.einsum('BDM,MHD->BDH', x, self.w1) + self.b1
out = out.squeeze(-1)
return out
def compute_normalized_entropy(logits, reduction='mean'):
"""Computes the normalized entropy for certainty-loss."""
preds = F.softmax(logits, dim=-1)
log_preds = torch.log_softmax(logits, dim=-1)
entropy = -torch.sum(preds * log_preds, dim=-1)
num_classes = preds.shape[-1]
max_entropy = torch.log(torch.tensor(num_classes, dtype=torch.float32))
normalized_entropy = entropy / max_entropy
if len(logits.shape) > 2 and reduction == 'mean':
normalized_entropy = normalized_entropy.flatten(1).mean(-1)
return normalized_entropy
class ContinuousThoughtMachine(nn.Module):
def __init__(self,
iterations,
d_model,
d_input,
memory_length,
heads,
n_synch_out,
n_synch_action,
out_dims,
memory_hidden_dims,
):
super(ContinuousThoughtMachine, self).__init__()
# --- Core Parameters ---
self.iterations = iterations
self.d_model = d_model
self.d_input = d_input
self.memory_length = memory_length
self.n_synch_out = n_synch_out
self.n_synch_action = n_synch_action
self.out_dims = out_dims
self.memory_length = memory_length
self.memory_hidden_dims = memory_hidden_dims
# --- Input Processing ---
self.backbone = nn.Sequential(
nn.LazyConv2d(d_input, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(d_input),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.LazyConv2d(d_input, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(d_input),
nn.ReLU(),
nn.MaxPool2d(2, 2),
)
self.attention = nn.MultiheadAttention(self.d_input, heads, batch_first=True)
self.kv_proj = nn.Sequential(nn.LazyLinear(self.d_input), nn.LayerNorm(self.d_input))
self.q_proj = nn.LazyLinear(self.d_input)
# --- Core CTM Modules ---
self.synapses = nn.Sequential(
nn.LazyLinear(d_model * 2),
nn.GLU(),
nn.LayerNorm(d_model)
)
self.trace_processor = nn.Sequential(
SuperLinear(in_dims=memory_length, out_dims=2 * memory_hidden_dims, N=d_model),
nn.GLU(),
SuperLinear(in_dims=memory_hidden_dims, out_dims=2, N=d_model),
nn.GLU(),
Squeeze(-1)
)
# --- Start States ---
self.register_parameter('start_activated_state', nn.Parameter(
torch.zeros((d_model)).uniform_(-math.sqrt(1/(d_model)), math.sqrt(1/(d_model))),
requires_grad=True
))
self.register_parameter('start_trace', nn.Parameter(
torch.zeros((d_model, memory_length)).uniform_(-math.sqrt(1/(d_model+memory_length)), math.sqrt(1/(d_model+memory_length))),
requires_grad=True
))
# --- Synchronisation ---
self.synch_representation_size_action = (self.n_synch_action * (self.n_synch_action+1))//2
self.synch_representation_size_out = (self.n_synch_out * (self.n_synch_out+1))//2
for synch_type, size in [('action', self.synch_representation_size_action), ('out', self.synch_representation_size_out)]:
print(f"Synch representation size {synch_type}: {size}")
self.set_synchronisation_parameters('out', self.n_synch_out)
self.set_synchronisation_parameters('action', self.n_synch_action)
# --- Output Processing ---
self.output_projector = nn.Sequential(nn.LazyLinear(self.out_dims))
def set_synchronisation_parameters(self, synch_type: str, n_synch: int):
left, right = self.initialize_left_right_neurons(synch_type, self.d_model, n_synch)
synch_representation_size = self.synch_representation_size_action if synch_type == 'action' else self.synch_representation_size_out
self.register_buffer(f'{synch_type}_neuron_indices_left', left)
self.register_buffer(f'{synch_type}_neuron_indices_right', right)
self.register_parameter(f'decay_params_{synch_type}', nn.Parameter(torch.zeros(synch_representation_size), requires_grad=True))
def initialize_left_right_neurons(self, synch_type, d_model, n_synch):
if synch_type == 'out':
neuron_indices_left = neuron_indices_right = torch.arange(0, n_synch)
elif synch_type == 'action':
neuron_indices_left = neuron_indices_right = torch.arange(d_model-n_synch, d_model)
return neuron_indices_left, neuron_indices_right
def compute_synchronisation(self, activated_state, decay_alpha, decay_beta, synch_type):
B = activated_state.size(0)
if synch_type == 'action':
n_synch = self.n_synch_action
decay_params = self.decay_params_action
selected_left = selected_right = activated_state[:, -n_synch:]
elif synch_type == 'out':
n_synch = self.n_synch_out
decay_params = self.decay_params_out
selected_left = selected_right = activated_state[:, :n_synch]
outer = selected_left.unsqueeze(2) * selected_right.unsqueeze(1)
i, j = torch.triu_indices(n_synch, n_synch)
pairwise_product = outer[:, i, j]
r = torch.exp(-torch.clamp(decay_params, 0, 15)).unsqueeze(0).repeat(B, 1)
if decay_alpha is None or decay_beta is None:
decay_alpha = pairwise_product
decay_beta = torch.ones_like(pairwise_product)
else:
decay_alpha = r * decay_alpha + pairwise_product
decay_beta = r * decay_beta + 1
synchronisation = decay_alpha / (torch.sqrt(decay_beta))
return synchronisation, decay_alpha, decay_beta
def compute_features(self, x):
input_features = self.backbone(x)
kv = self.kv_proj(input_features.flatten(2).transpose(1, 2))
return kv
def compute_certainty(self, current_prediction):
ne = compute_normalized_entropy(current_prediction)
current_certainty = torch.stack((ne, 1-ne), -1)
return current_certainty
def forward(self, x, track=False):
B = x.size(0)
device = x.device
# --- Tracking Initialization ---
pre_activations_tracking = []
post_activations_tracking = []
synch_out_tracking = []
synch_action_tracking = []
attention_tracking = []
# --- Featurise Input Data ---
kv = self.compute_features(x)
# --- Initialise Recurrent State ---
state_trace = self.start_trace.unsqueeze(0).expand(B, -1, -1) # Shape: (B, H, T)
activated_state = self.start_activated_state.unsqueeze(0).expand(B, -1) # Shape: (B, H)
# --- Storage for outputs per iteration
predictions = torch.empty(B, self.out_dims, self.iterations, device=device, dtype=x.dtype)
certainties = torch.empty(B, 2, self.iterations, device=device, dtype=x.dtype)
decay_alpha_action, decay_beta_action = None, None
_, decay_alpha_out, decay_beta_out = self.compute_synchronisation(activated_state, None, None, synch_type='out')
# --- Recurrent Loop ---
for stepi in range(self.iterations):
# --- Calculate Synchronisation for Input Data Interaction ---
synchronisation_action, decay_alpha_action, decay_beta_action = self.compute_synchronisation(activated_state, decay_alpha_action, decay_beta_action, synch_type='action')
# --- Interact with Data via Attention ---
q = self.q_proj(synchronisation_action).unsqueeze(1)
attn_out, attn_weights = self.attention(q, kv, kv, average_attn_weights=False, need_weights=True)
attn_out = attn_out.squeeze(1)
pre_synapse_input = torch.concatenate((attn_out, activated_state), dim=-1)
# --- Apply Synapses ---
state = self.synapses(pre_synapse_input)
state_trace = torch.cat((state_trace[:, :, 1:], state.unsqueeze(-1)), dim=-1)
# --- Activate ---
activated_state = self.trace_processor(state_trace)
# --- Calculate Synchronisation for Output Predictions ---
synchronisation_out, decay_alpha_out, decay_beta_out = self.compute_synchronisation(activated_state, decay_alpha_out, decay_beta_out, synch_type='out')
# --- Get Predictions and Certainties ---
current_prediction = self.output_projector(synchronisation_out)
current_certainty = self.compute_certainty(current_prediction)
predictions[..., stepi] = current_prediction
certainties[..., stepi] = current_certainty
# --- Tracking ---
if track:
pre_activations_tracking.append(state_trace[:,:,-1].detach().cpu().numpy())
post_activations_tracking.append(activated_state.detach().cpu().numpy())
attention_tracking.append(attn_weights.detach().cpu().numpy())
synch_out_tracking.append(synchronisation_out.detach().cpu().numpy())
synch_action_tracking.append(synchronisation_action.detach().cpu().numpy())
# --- Return Values ---
if track:
return predictions, certainties, (np.array(synch_out_tracking), np.array(synch_action_tracking)), np.array(pre_activations_tracking), np.array(post_activations_tracking), np.array(attention_tracking)
return predictions, certainties, synchronisation_out |