File size: 10,678 Bytes
b7253fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

class Identity(nn.Module):
    """Identity Module."""
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x

class Squeeze(nn.Module):
    """Squeeze Module."""
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        return x.squeeze(self.dim)

class SuperLinear(nn.Module):
    """SuperLinear Layer: Implements Neuron-Level Models (NLMs) for the CTM."""
    def __init__(self, in_dims, out_dims, N):
        super().__init__()
        self.in_dims = in_dims
        self.register_parameter('w1', nn.Parameter(
            torch.empty((in_dims, out_dims, N)).uniform_(
                -1/math.sqrt(in_dims + out_dims),
                 1/math.sqrt(in_dims + out_dims)
            ), requires_grad=True)
        )
        self.register_parameter('b1', nn.Parameter(torch.zeros((1, N, out_dims)), requires_grad=True))

    def forward(self, x):
        out = torch.einsum('BDM,MHD->BDH', x, self.w1) + self.b1
        out = out.squeeze(-1)
        return out

def compute_normalized_entropy(logits, reduction='mean'):
    """Computes the normalized entropy for certainty-loss."""
    preds = F.softmax(logits, dim=-1)
    log_preds = torch.log_softmax(logits, dim=-1)
    entropy = -torch.sum(preds * log_preds, dim=-1)
    num_classes = preds.shape[-1]
    max_entropy = torch.log(torch.tensor(num_classes, dtype=torch.float32))
    normalized_entropy = entropy / max_entropy
    if len(logits.shape) > 2 and reduction == 'mean':
        normalized_entropy = normalized_entropy.flatten(1).mean(-1)
    return normalized_entropy

class ContinuousThoughtMachine(nn.Module):
    def __init__(self,
                 iterations,
                 d_model,
                 d_input,
                 memory_length,
                 heads,
                 n_synch_out,
                 n_synch_action,
                 out_dims,
                 memory_hidden_dims,
                 ):
        super(ContinuousThoughtMachine, self).__init__()

        # --- Core Parameters ---
        self.iterations = iterations
        self.d_model = d_model
        self.d_input = d_input
        self.memory_length = memory_length
        self.n_synch_out = n_synch_out
        self.n_synch_action = n_synch_action
        self.out_dims = out_dims
        self.memory_length = memory_length
        self.memory_hidden_dims = memory_hidden_dims

        # --- Input Processing ---
        self.backbone = nn.Sequential(
            nn.LazyConv2d(d_input, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(d_input),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.LazyConv2d(d_input, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(d_input),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
        )
        self.attention = nn.MultiheadAttention(self.d_input, heads, batch_first=True)
        self.kv_proj = nn.Sequential(nn.LazyLinear(self.d_input), nn.LayerNorm(self.d_input))
        self.q_proj = nn.LazyLinear(self.d_input)

        # --- Core CTM Modules ---
        self.synapses = nn.Sequential(
            nn.LazyLinear(d_model * 2),
            nn.GLU(),
            nn.LayerNorm(d_model)
        )
        self.trace_processor = nn.Sequential(
            SuperLinear(in_dims=memory_length, out_dims=2 * memory_hidden_dims, N=d_model),
            nn.GLU(),
            SuperLinear(in_dims=memory_hidden_dims, out_dims=2, N=d_model),
            nn.GLU(),
            Squeeze(-1)
        )

        # --- Start States ---
        self.register_parameter('start_activated_state', nn.Parameter(
            torch.zeros((d_model)).uniform_(-math.sqrt(1/(d_model)), math.sqrt(1/(d_model))),
            requires_grad=True
        ))

        self.register_parameter('start_trace', nn.Parameter(
            torch.zeros((d_model, memory_length)).uniform_(-math.sqrt(1/(d_model+memory_length)), math.sqrt(1/(d_model+memory_length))),
            requires_grad=True
        ))

        # --- Synchronisation ---
        self.synch_representation_size_action = (self.n_synch_action * (self.n_synch_action+1))//2
        self.synch_representation_size_out = (self.n_synch_out * (self.n_synch_out+1))//2

        for synch_type, size in [('action', self.synch_representation_size_action), ('out', self.synch_representation_size_out)]:
            print(f"Synch representation size {synch_type}: {size}")

        self.set_synchronisation_parameters('out', self.n_synch_out)
        self.set_synchronisation_parameters('action', self.n_synch_action)

        # --- Output Processing ---
        self.output_projector = nn.Sequential(nn.LazyLinear(self.out_dims))

    def set_synchronisation_parameters(self, synch_type: str, n_synch: int):
        left, right = self.initialize_left_right_neurons(synch_type, self.d_model, n_synch)
        synch_representation_size = self.synch_representation_size_action if synch_type == 'action' else self.synch_representation_size_out
        self.register_buffer(f'{synch_type}_neuron_indices_left', left)
        self.register_buffer(f'{synch_type}_neuron_indices_right', right)
        self.register_parameter(f'decay_params_{synch_type}', nn.Parameter(torch.zeros(synch_representation_size), requires_grad=True))

    def initialize_left_right_neurons(self, synch_type, d_model, n_synch):
        if synch_type == 'out':
            neuron_indices_left = neuron_indices_right = torch.arange(0, n_synch)
        elif synch_type == 'action':
            neuron_indices_left = neuron_indices_right = torch.arange(d_model-n_synch, d_model)
        return neuron_indices_left, neuron_indices_right

    def compute_synchronisation(self, activated_state, decay_alpha, decay_beta, synch_type):
        B = activated_state.size(0)
        if synch_type == 'action':
            n_synch = self.n_synch_action
            decay_params = self.decay_params_action
            selected_left = selected_right = activated_state[:, -n_synch:]
        elif synch_type == 'out':
            n_synch = self.n_synch_out
            decay_params = self.decay_params_out
            selected_left = selected_right = activated_state[:, :n_synch]

        outer = selected_left.unsqueeze(2) * selected_right.unsqueeze(1)
        i, j = torch.triu_indices(n_synch, n_synch)
        pairwise_product = outer[:, i, j]
        r = torch.exp(-torch.clamp(decay_params, 0, 15)).unsqueeze(0).repeat(B, 1)

        if decay_alpha is None or decay_beta is None:
            decay_alpha = pairwise_product
            decay_beta = torch.ones_like(pairwise_product)
        else:
            decay_alpha = r * decay_alpha + pairwise_product
            decay_beta = r * decay_beta + 1

        synchronisation = decay_alpha / (torch.sqrt(decay_beta))
        return synchronisation, decay_alpha, decay_beta

    def compute_features(self, x):
        input_features = self.backbone(x)
        kv = self.kv_proj(input_features.flatten(2).transpose(1, 2))
        return kv

    def compute_certainty(self, current_prediction):
        ne = compute_normalized_entropy(current_prediction)
        current_certainty = torch.stack((ne, 1-ne), -1)
        return current_certainty

    def forward(self, x, track=False):
        B = x.size(0)
        device = x.device

        # --- Tracking Initialization ---
        pre_activations_tracking = []
        post_activations_tracking = []
        synch_out_tracking = []
        synch_action_tracking = []
        attention_tracking = []

        # --- Featurise Input Data ---
        kv = self.compute_features(x)

        # --- Initialise Recurrent State ---
        state_trace = self.start_trace.unsqueeze(0).expand(B, -1, -1) # Shape: (B, H, T)
        activated_state = self.start_activated_state.unsqueeze(0).expand(B, -1) # Shape: (B, H)

        # --- Storage for outputs per iteration
        predictions = torch.empty(B, self.out_dims, self.iterations, device=device, dtype=x.dtype)
        certainties = torch.empty(B, 2, self.iterations, device=device, dtype=x.dtype)

        decay_alpha_action, decay_beta_action = None, None
        _, decay_alpha_out, decay_beta_out = self.compute_synchronisation(activated_state, None, None, synch_type='out')

        # --- Recurrent Loop ---
        for stepi in range(self.iterations):
            # --- Calculate Synchronisation for Input Data Interaction ---
            synchronisation_action, decay_alpha_action, decay_beta_action = self.compute_synchronisation(activated_state, decay_alpha_action, decay_beta_action, synch_type='action')

            # --- Interact with Data via Attention ---
            q = self.q_proj(synchronisation_action).unsqueeze(1)
            attn_out, attn_weights = self.attention(q, kv, kv, average_attn_weights=False, need_weights=True)
            attn_out = attn_out.squeeze(1)
            pre_synapse_input = torch.concatenate((attn_out, activated_state), dim=-1)

            # --- Apply Synapses ---
            state = self.synapses(pre_synapse_input)
            state_trace = torch.cat((state_trace[:, :, 1:], state.unsqueeze(-1)), dim=-1)

            # --- Activate ---
            activated_state = self.trace_processor(state_trace)

            # --- Calculate Synchronisation for Output Predictions ---
            synchronisation_out, decay_alpha_out, decay_beta_out = self.compute_synchronisation(activated_state, decay_alpha_out, decay_beta_out, synch_type='out')

            # --- Get Predictions and Certainties ---
            current_prediction = self.output_projector(synchronisation_out)
            current_certainty = self.compute_certainty(current_prediction)

            predictions[..., stepi] = current_prediction
            certainties[..., stepi] = current_certainty

            # --- Tracking ---
            if track:
                pre_activations_tracking.append(state_trace[:,:,-1].detach().cpu().numpy())
                post_activations_tracking.append(activated_state.detach().cpu().numpy())
                attention_tracking.append(attn_weights.detach().cpu().numpy())
                synch_out_tracking.append(synchronisation_out.detach().cpu().numpy())
                synch_action_tracking.append(synchronisation_action.detach().cpu().numpy())

        # --- Return Values ---
        if track:
            return predictions, certainties, (np.array(synch_out_tracking), np.array(synch_action_tracking)), np.array(pre_activations_tracking), np.array(post_activations_tracking), np.array(attention_tracking)
        return predictions, certainties, synchronisation_out