File size: 10,700 Bytes
f2a953a
 
 
 
 
 
 
 
 
 
493855b
f2a953a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493855b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import torch.nn as nn
from torchvision import datasets, transforms
import numpy as np
from scipy.special import softmax
import math
import matplotlib.pyplot as plt
import seaborn as sns
import imageio
import os
from tqdm import tqdm

def get_loss(predictions, certainties, targets, use_most_certain=True):
    """Use most certain will select either the most certain point or the final point."""
    losses = nn.CrossEntropyLoss(reduction='none')(predictions,
                                                  torch.repeat_interleave(targets.unsqueeze(-1), predictions.size(-1), -1))

    loss_index_1 = losses.argmin(dim=1)
    loss_index_2 = certainties[:,1].argmax(-1)
    if not use_most_certain:
        loss_index_2[:] = -1

    batch_indexer = torch.arange(predictions.size(0), device=predictions.device)
    loss_minimum_ce = losses[batch_indexer, loss_index_1].mean()
    loss_selected = losses[batch_indexer, loss_index_2].mean()

    loss = (loss_minimum_ce + loss_selected)/2
    return loss, loss_index_2

def calculate_accuracy(predictions, targets, where_most_certain):
    """Calculate the accuracy based on the prediction at the most certain internal tick."""
    B = predictions.size(0)
    device = predictions.device

    predictions_at_most_certain_internal_tick = predictions.argmax(1)[torch.arange(B, device=device), where_most_certain].detach().cpu().numpy()
    accuracy = (targets.detach().cpu().numpy() == predictions_at_most_certain_internal_tick).mean()
    return accuracy

def prepare_data():
    transform = transforms.Compose([
        transforms.ToTensor(),
    ])
    train_data = datasets.MNIST(root="./data", train=True, download=True, transform=transform)
    test_data = datasets.MNIST(root="./data", train=False, download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True, num_workers=1)
    testloader = torch.utils.data.DataLoader(test_data, batch_size=64, shuffle=True, num_workers=1, drop_last=False)
    return trainloader, testloader

def make_gif(predictions, certainties, targets, pre_activations, post_activations, attention, inputs_to_model, filename):
    def reshape_attention_weights(attention_weights):
        T, B = attention_weights.shape[0], attention_weights.shape[1]
        grid_size = math.sqrt(attention_weights.shape[-1])
        assert grid_size.is_integer(), f'Grid size should be a perfect square, but got {attention_weights.shape[-1]}'
        H_ATTENTION = W_ATTENTION = int(grid_size)
        attn_weights_reshaped = attention_weights.reshape(T, B, -1, H_ATTENTION, W_ATTENTION)
        return attn_weights_reshaped.mean(2)

    batch_index = 0
    n_neurons_to_visualise = 16
    figscale = 0.28
    n_steps = len(pre_activations)
    heCTMap_cmap = sns.color_palette("viridis", as_cmap=True)
    frames = []

    attention = reshape_attention_weights(attention)

    these_pre_acts = pre_activations[:, batch_index, :]
    these_post_acts = post_activations[:, batch_index, :]
    these_inputs = inputs_to_model[batch_index, :, :, :]
    these_attention_weights = attention[:, batch_index, :, :]
    these_predictions = predictions[batch_index, :, :]
    these_certainties = certainties[batch_index, :, :]
    this_target = targets[batch_index]

    class_labels = [str(i) for i in range(these_predictions.shape[0])]

    mosaic = [['img_data', 'img_data', 'attention', 'attention', 'probs', 'probs', 'probs', 'probs'] for _ in range(2)] + \
             [['img_data', 'img_data', 'attention', 'attention', 'probs', 'probs', 'probs', 'probs'] for _ in range(2)] + \
             [['certainty'] * 8] + \
             [[f'trace_{ti}'] * 8 for ti in range(n_neurons_to_visualise)]

    for stepi in range(n_steps):
        fig_gif, axes_gif = plt.subplot_mosaic(mosaic=mosaic, figsize=(31*figscale*8/4, 76*figscale))
        probs = softmax(these_predictions[:, stepi])
        colors = [('g' if i == this_target else 'b') for i in range(len(probs))]

        axes_gif['probs'].bar(np.arange(len(probs)), probs, color=colors, width=0.9, alpha=0.5)
        axes_gif['probs'].set_title('Probabilities')
        axes_gif['probs'].set_xticks(np.arange(len(probs)))
        axes_gif['probs'].set_xticklabels(class_labels, fontsize=24)
        axes_gif['probs'].set_yticks([])
        axes_gif['probs'].tick_params(left=False, bottom=False)
        axes_gif['probs'].set_ylim([0, 1])
        for spine in axes_gif['probs'].spines.values():
            spine.set_visible(False)
        axes_gif['probs'].tick_params(left=False, bottom=False)
        axes_gif['probs'].spines['top'].set_visible(False)
        axes_gif['probs'].spines['right'].set_visible(False)
        axes_gif['probs'].spines['left'].set_visible(False)
        axes_gif['probs'].spines['bottom'].set_visible(False)

        # Certainty
        axes_gif['certainty'].plot(np.arange(n_steps), these_certainties[1], 'k-', linewidth=2)
        axes_gif['certainty'].set_xlim([0, n_steps-1])
        axes_gif['certainty'].axvline(x=stepi, color='black', linewidth=1, alpha=0.5)
        axes_gif['certainty'].set_xticklabels([])
        axes_gif['certainty'].set_yticklabels([])
        axes_gif['certainty'].grid(False)
        for spine in axes_gif['certainty'].spines.values():
            spine.set_visible(False)

        # Neuron Traces
        for neuroni in range(n_neurons_to_visualise):
            ax = axes_gif[f'trace_{neuroni}']
            pre_activation = these_pre_acts[:, neuroni]
            post_activation = these_post_acts[:, neuroni]
            ax_pre = ax.twinx()

            ax_pre.plot(np.arange(n_steps), pre_activation, color='grey', linestyle='--', linewidth=1, alpha=0.4)
            color = 'blue' if neuroni % 2 else 'red'
            ax.plot(np.arange(n_steps), post_activation, color=color, linewidth=2, alpha=1.0)

            ax.set_xlim([0, n_steps-1])
            ax_pre.set_xlim([0, n_steps-1])
            ax.set_ylim([np.min(post_activation), np.max(post_activation)])
            ax_pre.set_ylim([np.min(pre_activation), np.max(pre_activation)])

            ax.axvline(x=stepi, color='black', linewidth=1, alpha=0.5)
            ax.set_xticklabels([])
            ax.set_yticklabels([])
            ax.grid(False)
            ax_pre.set_xticklabels([])
            ax_pre.set_yticklabels([])
            ax_pre.grid(False)

            for spine in ax.spines.values():
                spine.set_visible(False)
            for spine in ax_pre.spines.values():
                spine.set_visible(False)

        # Input image
        this_image = these_inputs[0]
        this_image = (this_image - this_image.min()) / (this_image.max() - this_image.min() + 1e-8)
        axes_gif['img_data'].set_title('Input Image')
        axes_gif['img_data'].imshow(this_image, cmap='binary', vmin=0, vmax=1)
        axes_gif['img_data'].axis('off')

        # Attention
        this_input_gate = these_attention_weights[stepi]
        gate_min, gate_max = np.nanmin(this_input_gate), np.nanmax(this_input_gate)
        if not np.isclose(gate_min, gate_max):
            normalized_gate = (this_input_gate - gate_min) / (gate_max - gate_min + 1e-8)
        else:
            normalized_gate = np.zeros_like(this_input_gate)
        attention_weights_heCTMap = heCTMap_cmap(normalized_gate)[:,:,:3]

        axes_gif['attention'].imshow(attention_weights_heCTMap, vmin=0, vmax=1)
        axes_gif['attention'].axis('off')
        axes_gif['attention'].set_title('Attention')

        fig_gif.tight_layout()
        canvas = fig_gif.canvas
        canvas.draw()
        image_numpy = np.frombuffer(canvas.buffer_rgba(), dtype='uint8')
        image_numpy = image_numpy.reshape(*reversed(canvas.get_width_height()), 4)[:, :, :3]
        frames.append(image_numpy)
        plt.close(fig_gif)

    os.makedirs(os.path.dirname(filename), exist_ok=True)
    imageio.mimsave(filename, frames, fps=5, loop=100)
    return filename

def train(model, trainloader, testloader, iterations, device, lr=0.0001, status=None):
    test_every = 100
    optimizer = torch.optim.AdamW(params=list(model.parameters()), lr=lr, eps=1e-8)
    model.train()

    with tqdm(total=iterations, initial=0, dynamic_ncols=True) as pbar:
        test_loss = None
        test_accuracy = None
        for stepi in range(iterations):
            inputs, targets = next(iter(trainloader))
            inputs, targets = inputs.to(device), targets.to(device)
            predictions, certainties, _ = model(inputs, track=False)
            train_loss, where_most_certain = get_loss(predictions, certainties, targets)
            train_accuracy = calculate_accuracy(predictions, targets, where_most_certain)

            optimizer.zero_grad()
            train_loss.backward()
            optimizer.step()

            if stepi % test_every == 0:
                model.eval()
                with torch.inference_mode():
                    all_test_predictions = []
                    all_test_targets = []
                    all_test_where_most_certain = []
                    all_test_losses = []

                    for inputs, targets in testloader:
                        inputs, targets = inputs.to(device), targets.to(device)
                        predictions, certainties, _ = model(inputs, track=False)
                        test_loss, where_most_certain = get_loss(predictions, certainties, targets)
                        all_test_losses.append(test_loss.item())

                        all_test_predictions.append(predictions)
                        all_test_targets.append(targets)
                        all_test_where_most_certain.append(where_most_certain)

                    all_test_predictions = torch.cat(all_test_predictions, dim=0)
                    all_test_targets = torch.cat(all_test_targets, dim=0)
                    all_test_where_most_certain = torch.cat(all_test_where_most_certain, dim=0)

                    test_accuracy = calculate_accuracy(all_test_predictions, all_test_targets, all_test_where_most_certain)
                    test_loss = sum(all_test_losses) / len(all_test_losses)
                model.train()

            # Update progress
            if status is not None:
                status["progress"] = (stepi + 1) / iterations * 100
                status["message"] = f'Train Loss: {train_loss:.3f}, Train Accuracy: {train_accuracy:.3f}, Test Loss: {test_loss or 0:.3f}, Test Accuracy: {test_accuracy or 0:.3f}'

            pbar.set_description(f'Train Loss: {train_loss:.3f}, Train Accuracy: {train_accuracy:.3f} Test Loss: {test_loss or 0:.3f}, Test Accuracy: {test_accuracy or 0:.3f}')
            pbar.update(1)

    return model