Embedding-Atlas / app.py
broadfield-dev's picture
Update app.py
e5a2012 verified
import gradio as gr
import pandas as pd
from datasets import load_dataset, get_dataset_split_names
from huggingface_hub import HfApi
import os
import pathlib
import uuid
import logging
import threading
import time
import socket
import uvicorn
# --- Setup Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Embedding Atlas Imports ---
from embedding_atlas.data_source import DataSource
from embedding_atlas.server import make_server
from embedding_atlas.projection import compute_text_projection
from embedding_atlas.utils import Hasher
# --- Helper functions ---
def find_column_name(existing_names, candidate):
if candidate not in existing_names:
return candidate
index = 1
while True:
s = f"{candidate}_{index}"
if s not in existing_names:
return s
index += 1
def find_available_port(start_port: int, max_attempts: int = 100):
"""Finds an available TCP port on the host."""
for port in range(start_port, start_port + max_attempts):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
if s.connect_ex(('127.0.0.1', port)) != 0:
logging.info(f"Found available port: {port}")
return port
raise RuntimeError("Could not find an available port.")
def run_atlas_server(app, port):
"""Target function for the background thread to run the Uvicorn server."""
logging.info(f"Starting Atlas server on http://127.0.0.1:{port}")
uvicorn.run(app, host="127.0.0.1", port=port, log_level="warning")
# --- Hugging Face API Helpers ---
hf_api = HfApi()
def get_user_datasets(username: str):
logging.info(f"Fetching datasets for user: {username}")
if not username: return gr.update(choices=[], value=None, interactive=False)
try:
datasets = hf_api.list_datasets(author=username, full=True)
dataset_ids = [d.id for d in datasets if not d.private]
logging.info(f"Found {len(dataset_ids)} datasets.")
return gr.update(choices=sorted(dataset_ids), value=None, interactive=True)
except Exception as e:
logging.error(f"Failed to fetch datasets: {e}")
return gr.update(choices=[], value=None, interactive=False)
def get_dataset_splits(dataset_id: str):
logging.info(f"Fetching splits for: {dataset_id}")
if not dataset_id: return gr.update(choices=[], value=None, interactive=False)
try:
splits = get_dataset_split_names(dataset_id)
logging.info(f"Found splits: {splits}")
return gr.update(choices=splits, value=splits[0] if splits else None, interactive=True)
except Exception as e:
logging.error(f"Failed to fetch splits: {e}")
return gr.update(choices=[], value=None, interactive=False)
def get_split_columns(dataset_id: str, split: str):
logging.info(f"Fetching columns for: {dataset_id}/{split}")
if not dataset_id or not split: return gr.update(choices=[], value=None, interactive=False)
try:
dataset_sample = load_dataset(dataset_id, split=split, streaming=True)
first_row = next(iter(dataset_sample))
columns = list(first_row.keys())
logging.info(f"Found columns: {columns}")
preferred_cols = ['text', 'content', 'instruction', 'question', 'document', 'prompt']
best_col = next((col for col in preferred_cols if col in columns), columns[0] if columns else None)
return gr.update(choices=columns, value=best_col, interactive=True)
except Exception as e:
logging.error(f"Failed to get columns: {e}", exc_info=True)
return gr.update(choices=[], value=None, interactive=False)
# --- Main Atlas Generation Logic ---
def generate_atlas(
dataset_name: str,
split: str,
text_column: str,
sample_size: int,
model_name: str,
umap_neighbors: int,
umap_min_dist: float,
progress=gr.Progress(track_tqdm=True)
):
if not all([dataset_name, split, text_column]):
raise gr.Error("Please ensure a Dataset, Split, and Text Column are selected.")
progress(0, desc="Loading dataset...")
df = load_dataset(dataset_name, split=split).to_pandas()
if sample_size > 0 and sample_size < len(df):
df = df.sample(n=sample_size, random_state=42).reset_index(drop=True)
progress(0.2, desc="Computing embeddings and UMAP...")
x_col = find_column_name(df.columns, "projection_x")
y_col = find_column_name(df.columns, "projection_y")
neighbors_col = find_column_name(df.columns, "__neighbors")
compute_text_projection(
df, text_column, x=x_col, y=y_col, neighbors=neighbors_col, model=model_name,
umap_args={"n_neighbors": umap_neighbors, "min_dist": umap_min_dist, "metric": "cosine", "random_state": 42},
)
progress(0.8, desc="Preparing Atlas data source...")
id_col = find_column_name(df.columns, "_row_index")
df[id_col] = range(df.shape[0])
metadata = {"columns": {"id": id_col, "text": text_column, "embedding": {"x": x_col, "y": y_col}, "neighbors": neighbors_col}}
hasher = Hasher()
hasher.update(f"{dataset_name}-{split}-{text_column}-{sample_size}-{model_name}-{uuid.uuid4()}")
identifier = hasher.hexdigest()
atlas_dataset = DataSource(identifier, df, metadata)
progress(0.9, desc="Starting Atlas server...")
static_path = str((pathlib.Path(__import__('embedding_atlas').__file__).parent / "static").resolve())
atlas_app = make_server(atlas_dataset, static_path=static_path, duckdb_uri="wasm")
# Find an open port and run the server in a background thread
port = find_available_port(start_port=8001)
thread = threading.Thread(target=run_atlas_server, args=(atlas_app, port), daemon=True)
thread.start()
# Give the server a moment to start up
time.sleep(2)
iframe_html = f"<iframe src='http//127.0.0.1:{port}' width='100%' height='800px' frameborder='0'></iframe>"
return gr.HTML(iframe_html)
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), title="Embedding Atlas Explorer") as app:
# UI elements...
gr.Markdown("# Embedding Atlas Explorer")
# ... (rest of the UI is the same as before) ...
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Select Data")
hf_user_input = gr.Textbox(label="Hugging Face User or Org Name", value="Trendyol", placeholder="e.g., 'gradio' or 'google'")
dataset_input = gr.Dropdown(label="Select a Dataset", interactive=False)
split_input = gr.Dropdown(label="Select a Split", interactive=False)
text_column_input = gr.Dropdown(label="Select a Text Column", interactive=False)
gr.Markdown("### 2. Configure Visualization")
sample_size_input = gr.Slider(label="Number of Samples", minimum=0, maximum=10000, value=2000, step=100)
with gr.Accordion("Advanced Settings", open=False):
model_input = gr.Dropdown(label="Embedding Model", choices=["all-MiniLM-L6-v2", "all-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1"], value="all-MiniLM-L6-v2")
umap_neighbors_input = gr.Slider(label="UMAP Neighbors", minimum=2, maximum=100, value=15, step=1, info="Controls local vs. global structure.")
umap_min_dist_input = gr.Slider(label="UMAP Min Distance", minimum=0.0, maximum=0.99, value=0.1, step=0.01, info="Controls how tightly points are packed.")
generate_button = gr.Button("Generate Atlas", variant="primary")
with gr.Column(scale=3):
gr.Markdown("### 3. Explore Atlas")
output_html = gr.HTML("<div style='display:flex; justify-content:center; align-items:center; height:800px; border: 1px solid #ddd; border-radius: 5px;'><p>Atlas will be displayed here after generation.</p></div>")
# --- Event Listeners ---
hf_user_input.submit(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
dataset_input.change(fn=get_dataset_splits, inputs=dataset_input, outputs=split_input)
split_input.change(fn=get_split_columns, inputs=[dataset_input, split_input], outputs=text_column_input)
generate_button.click(
fn=generate_atlas,
inputs=[dataset_input, split_input, text_column_input, sample_size_input, model_input, umap_neighbors_input, umap_min_dist_input],
outputs=[output_html],
)
app.load(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
if __name__ == "__main__":
app.launch(debug=True)