Spaces:
Running
Running
File size: 13,873 Bytes
f32080a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
// keylock.js
class KeyLock {
constructor() {
this.PREFERRED_FONTS = "bold 30px Arial, 'DejaVu Sans', Helvetica, sans-serif";
}
// --- Core Cryptography Methods ---
/**
* Converts a PEM-formatted key string to an ArrayBuffer.
* @param {string} pem - The PEM string (e.g., -----BEGIN...-----).
* @returns {ArrayBuffer} The raw binary data of the key.
*/
_pemToBinary(pem) {
const lines = pem.split('\n');
const base64 = lines
.filter(line => !line.startsWith('-----'))
.join('');
const binaryDer = window.atob(base64);
const uint8Array = new Uint8Array(binaryDer.length);
for (let i = 0; i < binaryDer.length; i++) {
uint8Array[i] = binaryDer.charCodeAt(i);
}
return uint8Array.buffer;
}
/**
* Converts an ArrayBuffer key to a PEM-formatted string.
* @param {ArrayBuffer} buffer - The raw binary data of the key.
* @param {string} label - The label for the PEM file (e.g., "PRIVATE KEY").
* @returns {string} The PEM-formatted key string.
*/
_binaryToPem(buffer, label) {
const binaryStr = String.fromCharCode.apply(null, new Uint8Array(buffer));
const base64 = window.btoa(binaryStr);
let pem = `-----BEGIN ${label}-----\n`;
for (let i = 0; i < base64.length; i += 64) {
pem += base64.slice(i, i + 64) + '\n';
}
pem += `-----END ${label}-----`;
return pem;
}
/**
* Imports an RSA public key from PEM format into a CryptoKey object.
* @param {string} pem - The public key in PEM format (SPKI).
* @returns {Promise<CryptoKey>}
*/
async importRsaPublicKey(pem) {
return await window.crypto.subtle.importKey(
'spki',
this._pemToBinary(pem), {
name: 'RSA-OAEP',
hash: 'SHA-256'
},
true,
['encrypt']
);
}
/**
* Imports an RSA private key from PEM format into a CryptoKey object.
* @param {string} pem - The private key in PEM format (PKCS#8).
* @returns {Promise<CryptoKey>}
*/
async importRsaPrivateKey(pem) {
return await window.crypto.subtle.importKey(
'pkcs8',
this._pemToBinary(pem), {
name: 'RSA-OAEP',
hash: 'SHA-256'
},
true,
['decrypt']
);
}
/**
* Generates a new RSA-2048 key pair.
* @returns {Promise<{privateKeyPem: string, publicKeyPem: string}>}
*/
async generatePemKeys() {
const keyPair = await window.crypto.subtle.generateKey({
name: 'RSA-OAEP',
modulusLength: 2048,
publicExponent: new Uint8Array([1, 0, 1]), // 65537
hash: 'SHA-256',
},
true,
['encrypt', 'decrypt']
);
const privateKeyDer = await window.crypto.subtle.exportKey('pkcs8', keyPair.privateKey);
const publicKeyDer = await window.crypto.subtle.exportKey('spki', keyPair.publicKey);
return {
privateKeyPem: this._binaryToPem(privateKeyDer, 'PRIVATE KEY'),
publicKeyPem: this._binaryToPem(publicKeyDer, 'PUBLIC KEY'),
};
}
// --- Image Generation and Steganography ---
/**
* Generates a procedural starfield image on a canvas.
* @param {number} w - Width of the canvas.
* @param {number} h - Height of the canvas.
* @returns {HTMLCanvasElement}
*/
_generateStarfieldImage(w = 800, h = 800) {
const canvas = document.createElement('canvas');
canvas.width = w;
canvas.height = h;
const ctx = canvas.getContext('2d');
// Background gradient
const centerX = w / 2;
const centerY = h / 2;
const gradient = ctx.createRadialGradient(centerX, centerY, 0, centerX, centerY, w / 2);
gradient.addColorStop(0, 'rgb(20, 25, 40)');
gradient.addColorStop(1, 'rgb(0, 0, 5)');
ctx.fillStyle = gradient;
ctx.fillRect(0, 0, w, h);
// Dim stars
for (let i = 0; i < (w * h) / 200; i++) {
const x = Math.random() * w;
const y = Math.random() * h;
const brightness = 30 + Math.random() * 60;
ctx.fillStyle = `rgb(${Math.floor(brightness * 0.9)}, ${Math.floor(brightness * 0.9)}, ${brightness})`;
ctx.fillRect(x, y, 1, 1);
}
// Bright stars with glow
const starColors = ['rgb(255, 255, 255)', 'rgb(220, 230, 255)', 'rgb(255, 240, 220)'];
for (let i = 0; i < (w * h) / 1000; i++) {
const x = Math.random() * w;
const y = Math.random() * h;
const size = 0.5 + 2.5 * (Math.random() ** 2);
const brightness = 120 + 135 * (Math.random() ** 1.5);
const color = starColors[Math.floor(Math.random() * starColors.length)];
ctx.beginPath();
const glowGradient = ctx.createRadialGradient(x, y, 0, x, y, size * 3);
glowGradient.addColorStop(0, color.replace(')', `, ${brightness / 255})`).replace('rgb', 'rgba'));
glowGradient.addColorStop(1, color.replace(')', ', 0)').replace('rgb', 'rgba'));
ctx.fillStyle = glowGradient;
ctx.arc(x, y, size * 3, 0, 2 * Math.PI);
ctx.fill();
ctx.beginPath();
ctx.fillStyle = color.replace(')', `, ${brightness / 255})`).replace('rgb', 'rgba');
ctx.arc(x, y, size, 0, 2 * Math.PI);
ctx.fill();
}
return canvas;
}
/**
* Draws the text overlay on the image.
* @param {HTMLCanvasElement} canvas - The canvas to draw on.
* @returns {HTMLCanvasElement} The same canvas, now with an overlay.
*/
_drawOverlay(canvas) {
const ctx = canvas.getContext('2d');
const { width, height } = canvas;
ctx.fillStyle = 'rgba(10, 15, 30, 0.78)'; // 200/255 alpha
ctx.fillRect(0, 20, width, 60);
ctx.fillStyle = 'rgb(200, 220, 255)';
ctx.font = this.PREFERRED_FONTS;
ctx.textAlign = 'center';
ctx.textBaseline = 'middle';
ctx.fillText("KeyLock Secure Data", width / 2, 50);
return canvas;
}
/**
* Parses a key-value string into a JavaScript object.
* @param {string} kvString - The input string (e.g., 'USER="test"\nPASS:123').
* @returns {object}
*/
_parseKvString(kvString) {
const payload = {};
if (!kvString) return payload;
const lines = kvString.trim().split('\n');
for (const line of lines) {
const trimmedLine = line.trim();
if (!trimmedLine || trimmedLine.startsWith('#')) continue;
const parts = trimmedLine.split(/[:=]/, 2);
if (parts.length === 2) {
let [key, value] = parts;
key = key.trim().replace(/^['"]|['"]$/g, '');
value = value.trim().replace(/^['"]|['"]$/g, '');
if (key) {
payload[key] = value;
}
}
}
return payload;
}
// --- Main Public Methods: Encoding and Decoding ---
/**
* Generates an encrypted image containing the payload.
* @param {string} payloadKvString - The key-value data to encrypt.
* @param {string} publicKeyPem - The RSA public key in PEM format.
* @returns {Promise<string>} A data URL of the generated PNG image.
*/
async generateEncryptedImage(payloadKvString, publicKeyPem) {
const payloadDict = this._parseKvString(payloadKvString);
if (Object.keys(payloadDict).length === 0) {
throw new Error("Payload is empty or could not be parsed.");
}
// 1. Prepare crypto primitives
const publicKey = await this.importRsaPublicKey(publicKeyPem);
const aesKey = await window.crypto.subtle.generateKey({ name: 'AES-GCM', length: 256 }, true, ['encrypt', 'decrypt']);
const nonce = window.crypto.getRandomValues(new Uint8Array(12));
// 2. Encrypt payload with AES
const jsonBytes = new TextEncoder().encode(JSON.stringify(payloadDict));
const ciphertext = await window.crypto.subtle.encrypt({ name: 'AES-GCM', iv: nonce }, aesKey, jsonBytes);
// 3. Encrypt AES key with RSA
const exportedAesKey = await window.crypto.subtle.exportKey('raw', aesKey);
const encryptedAesKey = await window.crypto.subtle.encrypt({ name: 'RSA-OAEP' }, publicKey, exportedAesKey);
// 4. Construct the final binary payload
// Format: [4-byte len of RSA key][RSA key][12-byte nonce][AES ciphertext]
const totalLength = 4 + encryptedAesKey.byteLength + nonce.byteLength + ciphertext.byteLength;
const finalPayload = new Uint8Array(totalLength);
const view = new DataView(finalPayload.buffer);
let offset = 0;
view.setUint32(offset, encryptedAesKey.byteLength, false); // Big-endian
offset += 4;
finalPayload.set(new Uint8Array(encryptedAesKey), offset);
offset += encryptedAesKey.byteLength;
finalPayload.set(nonce, offset);
offset += nonce.byteLength;
finalPayload.set(new Uint8Array(ciphertext), offset);
// 5. Generate base image
const canvas = this._generateStarfieldImage();
this._drawOverlay(canvas);
const ctx = canvas.getContext('2d');
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
const pixelData = imageData.data;
// 6. Embed payload into image via LSB steganography
// Format: [32-bit length header][payload bits]
const payloadWithHeader = new Uint8Array(4 + finalPayload.length);
const headerView = new DataView(payloadWithHeader.buffer);
headerView.setUint32(0, finalPayload.length, false); // Big-endian
payloadWithHeader.set(finalPayload, 4);
let binaryPayload = '';
payloadWithHeader.forEach(byte => {
binaryPayload += byte.toString(2).padStart(8, '0');
});
if (binaryPayload.length > pixelData.length) {
throw new Error("Payload is too large for the image.");
}
for (let i = 0; i < binaryPayload.length; i++) {
pixelData[i] = (pixelData[i] & 0xFE) | parseInt(binaryPayload[i], 2);
}
// 7. Finalize and return image
ctx.putImageData(imageData, 0, 0);
return canvas.toDataURL('image/png');
}
/**
* Decodes a payload hidden inside an image.
* @param {HTMLImageElement} imageElement - The image containing the hidden data.
* @param {string} privateKeyPem - The RSA private key in PEM format.
* @returns {Promise<{status: string, payload?: object, message?: string}>}
*/
async decodePayload(imageElement, privateKeyPem) {
try {
const privateKey = await this.importRsaPrivateKey(privateKeyPem);
// 1. Extract pixel data from image
const canvas = document.createElement('canvas');
canvas.width = imageElement.naturalWidth;
canvas.height = imageElement.naturalHeight;
const ctx = canvas.getContext('2d');
ctx.drawImage(imageElement, 0, 0);
const pixelData = ctx.getImageData(0, 0, canvas.width, canvas.height).data;
// 2. Extract binary data from LSBs
let headerBinary = '';
for (let i = 0; i < 32; i++) {
headerBinary += (pixelData[i] & 1).toString();
}
const dataLength = parseInt(headerBinary, 2); // Length in bytes
const requiredPixels = 32 + dataLength * 8;
if (requiredPixels > pixelData.length) {
throw new Error("Incomplete payload in image.");
}
let dataBinary = '';
for (let i = 32; i < requiredPixels; i++) {
dataBinary += (pixelData[i] & 1).toString();
}
// 3. Convert binary string to ArrayBuffer
const cryptoPayload = new Uint8Array(dataLength);
for (let i = 0; i < dataLength; i++) {
cryptoPayload[i] = parseInt(dataBinary.substring(i * 8, (i + 1) * 8), 2);
}
// 4. Parse the crypto payload
const view = new DataView(cryptoPayload.buffer);
let offset = 0;
const encryptedAesKeyLen = view.getUint32(offset, false); // Big-endian
offset += 4;
const encryptedAesKey = cryptoPayload.slice(offset, offset + encryptedAesKeyLen);
offset += encryptedAesKeyLen;
const nonce = cryptoPayload.slice(offset, offset + 12);
offset += 12;
const ciphertext = cryptoPayload.slice(offset);
// 5. Decrypt AES key with RSA private key
const recoveredAesKeyBytes = await window.crypto.subtle.decrypt({ name: 'RSA-OAEP' }, privateKey, encryptedAesKey);
const recoveredAesKey = await window.crypto.subtle.importKey('raw', recoveredAesKeyBytes, { name: 'AES-GCM' }, true, ['decrypt']);
// 6. Decrypt payload with AES key
const decryptedPayloadBytes = await window.crypto.subtle.decrypt({ name: 'AES-GCM', iv: nonce }, recoveredAesKey, ciphertext);
const payloadJson = new TextDecoder().decode(decryptedPayloadBytes);
const payload = JSON.parse(payloadJson);
return { status: "Success", payload: payload };
} catch (e) {
console.error("Decryption Failed:", e);
return { status: "Error", message: `Decryption Failed: ${e.message}` };
}
}
} |