Spaces:
Sleeping
Sleeping
File size: 9,002 Bytes
cf10c85 9a08a0f 54046f4 cf10c85 38db139 739c95c cf10c85 07ceb61 cf10c85 54046f4 cf10c85 739c95c dbdbe8c cf10c85 3bdc160 739c95c bab9790 54046f4 cf10c85 9271377 8ce83ce 9271377 8ce83ce cf10c85 54046f4 cf10c85 a7c55d0 41abbcb cf10c85 9271377 41abbcb 54046f4 41abbcb a7c55d0 54046f4 41abbcb 54046f4 41abbcb 54046f4 41abbcb 54046f4 cf10c85 41abbcb 54046f4 41abbcb 54046f4 a7c55d0 cf10c85 4f6bd49 46fd3e1 9a08a0f 522b0df 38db139 8c48251 522b0df 8c48251 54046f4 8c48251 54046f4 4f6bd49 54046f4 cf10c85 54046f4 4f6bd49 8c48251 4f6bd49 54046f4 4f6bd49 cf10c85 54046f4 7e1ea76 54046f4 7e1ea76 54046f4 739c95c 54046f4 4f6bd49 54046f4 4f6bd49 54046f4 cf10c85 54046f4 4f6bd49 54046f4 4f6bd49 54046f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import feedparser
from chromadb import PersistentClient
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_core.documents import Document
import logging
from huggingface_hub import HfApi, login, snapshot_download
from datetime import datetime
import dateutil.parser
import hashlib
import json
import re
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
LOCAL_DB_DIR = "chroma_db"
FEEDS_FILE = "rss_feeds.json"
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("HF_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
MAX_ARTICLES_PER_FEED = 1000
def initialize_hf_api():
if not HF_API_TOKEN:
logger.error("Hugging Face API token (HF_TOKEN) not set.")
raise ValueError("HF_TOKEN environment variable is not set.")
try:
login(token=HF_API_TOKEN)
return HfApi()
except Exception as e:
logger.error(f"Failed to login to Hugging Face Hub: {e}")
raise
def get_embedding_model():
if not hasattr(get_embedding_model, "model"):
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
return get_embedding_model.model
def clean_text(text):
if not text or not isinstance(text, str):
return ""
text = re.sub(r'<.*?>', '', text)
text = ' '.join(text.split())
return text.strip()
def fetch_rss_feeds():
articles = []
seen_links = set()
try:
with open(FEEDS_FILE, 'r') as f:
feed_categories = json.load(f)
except FileNotFoundError:
logger.error(f"{FEEDS_FILE} not found. No feeds to process.")
return []
for category, feeds in feed_categories.items():
for feed_info in feeds:
feed_url = feed_info.get("url")
if not feed_url:
logger.warning(f"Skipping feed with no URL in category '{category}'")
continue
try:
logger.info(f"Fetching {feed_url}")
feed = feedparser.parse(feed_url)
if feed.bozo:
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
continue
for entry in feed.entries[:MAX_ARTICLES_PER_FEED]:
link = entry.get("link", "")
if not link or link in seen_links:
continue
seen_links.add(link)
title = entry.get("title", "No Title")
description_raw = entry.get("summary", entry.get("description", ""))
description = clean_text(description_raw)
if not description:
continue
published_str = "Unknown Date"
for date_field in ["published", "updated", "created", "pubDate"]:
if date_field in entry:
try:
parsed_date = dateutil.parser.parse(entry[date_field])
published_str = parsed_date.isoformat()
break
except (ValueError, TypeError):
continue
image = "svg"
image_sources = [
lambda e: e.get("media_content", [{}])[0].get("url") if e.get("media_content") else None,
lambda e: e.get("media_thumbnail", [{}])[0].get("url") if e.get("media_thumbnail") else None,
lambda e: e.get("enclosure", {}).get("url") if e.get("enclosure") and e.get("enclosure", {}).get('type', '').startswith('image') else None,
lambda e: next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), None),
]
for source_func in image_sources:
try:
img_url = source_func(entry)
if img_url and isinstance(img_url, str) and img_url.strip():
image = img_url
break
except (IndexError, AttributeError, TypeError):
continue
articles.append({
"title": title,
"link": link,
"description": description,
"published": published_str,
"category": category,
"image": image,
})
except Exception as e:
logger.error(f"Error fetching or parsing {feed_url}: {e}")
logger.info(f"Total unique articles fetched: {len(articles)}")
return articles
def process_and_store_articles(articles):
if not os.path.exists(LOCAL_DB_DIR):
os.makedirs(LOCAL_DB_DIR)
client = PersistentClient(path=LOCAL_DB_DIR)
collection = client.get_or_create_collection(name=COLLECTION_NAME)
try:
existing_ids = set(collection.get(include=[])["ids"])
logger.info(f"Loaded {len(existing_ids)} existing document IDs from {LOCAL_DB_DIR}.")
except Exception:
logger.info("No existing DB found or it is empty. Starting fresh.")
existing_ids = set()
contents_to_add = []
metadatas_to_add = []
ids_to_add = []
for article in articles:
if not article.get('link'):
continue
doc_id = hashlib.sha256(article['link'].encode('utf-8')).hexdigest()
if doc_id in existing_ids:
continue
metadata = {
"title": article["title"],
"link": article["link"],
"published": article["published"],
"category": article["category"],
"image": article["image"],
}
contents_to_add.append(article["description"])
metadatas_to_add.append(metadata)
ids_to_add.append(doc_id)
if ids_to_add:
logger.info(f"Found {len(ids_to_add)} new articles to add to the database.")
try:
embedding_model = get_embedding_model()
embeddings_to_add = embedding_model.embed_documents(contents_to_add)
collection.add(
embeddings=embeddings_to_add,
documents=contents_to_add,
metadatas=metadatas_to_add,
ids=ids_to_add
)
logger.info(f"Successfully added {len(ids_to_add)} new articles to DB. Total in DB: {collection.count()}")
except Exception as e:
logger.error(f"Error storing articles in ChromaDB: {e}", exc_info=True)
else:
logger.info("No new articles to add to the database.")
def download_from_hf_hub():
if not os.path.exists(os.path.join(LOCAL_DB_DIR, "chroma.sqlite3")):
try:
logger.info(f"Downloading Chroma DB from {REPO_ID} to {LOCAL_DB_DIR}...")
snapshot_download(
repo_id=REPO_ID,
repo_type="dataset",
local_dir=".",
local_dir_use_symlinks=False,
allow_patterns=[f"{LOCAL_DB_DIR}/**"],
token=HF_API_TOKEN
)
logger.info("Finished downloading DB.")
except Exception as e:
logger.warning(f"Could not download from Hugging Face Hub (this is normal on first run): {e}")
else:
logger.info(f"Local Chroma DB found at '{LOCAL_DB_DIR}', skipping download.")
def upload_to_hf_hub(hf_api):
if os.path.exists(LOCAL_DB_DIR):
try:
logger.info(f"Uploading updated Chroma DB '{LOCAL_DB_DIR}' to {REPO_ID}...")
hf_api.upload_folder(
folder_path=LOCAL_DB_DIR,
path_in_repo=LOCAL_DB_DIR,
repo_id=REPO_ID,
repo_type="dataset",
commit_message=f"Update RSS news database {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
ignore_patterns=["*.bak", "*.tmp"]
)
logger.info(f"Database folder '{LOCAL_DB_DIR}' uploaded to: {REPO_ID}")
except Exception as e:
logger.error(f"Error uploading to Hugging Face Hub: {e}", exc_info=True)
def main():
try:
hf_api = initialize_hf_api()
download_from_hf_hub()
articles_to_process = fetch_rss_feeds()
if articles_to_process:
process_and_store_articles(articles_to_process)
upload_to_hf_hub(hf_api)
else:
logger.info("No articles fetched, skipping database processing and upload.")
except Exception as e:
logger.critical(f"An unhandled error occurred in main execution: {e}", exc_info=True)
if __name__ == "__main__":
main() |