Spaces:
Sleeping
Sleeping
File size: 8,286 Bytes
430a9bd 3aa40bc 430a9bd 098c670 e3abb04 4a45db6 a058939 7dc6a2c 430a9bd e3abb04 098c670 a69bc3b d695c62 430a9bd 3aa40bc bc16436 4a45db6 430a9bd 7dc6a2c 430a9bd e3abb04 7dc6a2c 4a45db6 e3abb04 15033cb a058939 15033cb e3abb04 15033cb e3abb04 430a9bd a058939 15033cb 4a45db6 15033cb 4a45db6 15033cb 430a9bd 7dc6a2c 430a9bd a058939 3aa40bc e3abb04 a69bc3b 430a9bd 3aa40bc e3abb04 3aa40bc e3abb04 3aa40bc e3abb04 3aa40bc 430a9bd e3abb04 430a9bd 3aa40bc 430a9bd 3aa40bc a058939 e3abb04 430a9bd e3abb04 430a9bd e3abb04 430a9bd e3abb04 430a9bd e3abb04 3aa40bc e3abb04 3aa40bc e3abb04 3aa40bc e3abb04 430a9bd 3aa40bc 430a9bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login, snapshot_download
import shutil
import rss_feeds
from datetime import datetime
import dateutil.parser
import hashlib
import re
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
LOCAL_DB_DIR = "chroma_db"
RSS_FEEDS = rss_feeds.RSS_FEEDS
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("HF_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
login(token=HF_API_TOKEN)
hf_api = HfApi()
def get_embedding_model():
if not hasattr(get_embedding_model, "model"):
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
return get_embedding_model.model
def clean_text(text):
if not text or not isinstance(text, str):
return ""
text = re.sub(r'<.*?>', '', text)
text = ' '.join(text.split())
return text.strip().lower()
def fetch_rss_feeds():
articles = []
seen_keys = set()
for feed_url in RSS_FEEDS:
try:
logger.info(f"Fetching {feed_url}")
feed = feedparser.parse(feed_url)
if feed.bozo:
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
continue
article_count = 0
for entry in feed.entries:
if article_count >= 10:
break
title = entry.get("title", "No Title")
link = entry.get("link", "")
description = entry.get("summary", entry.get("description", ""))
cleaned_title = clean_text(title)
cleaned_link = clean_text(link)
published = "Unknown Date"
for date_field in ["published", "updated", "created", "pubDate"]:
if date_field in entry:
try:
parsed_date = dateutil.parser.parse(entry[date_field])
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
break
except (ValueError, TypeError):
continue
key = f"{cleaned_title}|{cleaned_link}|{published}"
if key not in seen_keys:
seen_keys.add(key)
image = "svg"
for img_source in [
lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "",
lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "",
]:
try:
img = img_source(entry)
if img and img.strip():
image = img
break
except (IndexError, AttributeError, TypeError):
continue
articles.append({
"title": title,
"link": link,
"description": description,
"published": published,
"category": categorize_feed(feed_url),
"image": image,
})
article_count += 1
except Exception as e:
logger.error(f"Error fetching {feed_url}: {e}")
logger.info(f"Total articles fetched: {len(articles)}")
return articles
def categorize_feed(url):
if not url or not isinstance(url, str):
return "Uncategorized"
url = url.lower().strip()
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "jneurosci.org", "nejm.org", "lancet.com"]): return "Academic Papers"
if any(keyword in url for keyword in ["ft.com", "marketwatch.com", "cnbc.com", "wsj.com", "economist.com"]): return "Business"
if any(keyword in url for keyword in ["investing.com", "fool.co.uk", "seekingalpha.com", "yahoofinance.com"]): return "Stocks & Markets"
if any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space.com", "universetoday.com", "esa.int"]): return "Space"
if any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "scientificamerican", "newscientist", "livescience"]): return "Science"
if any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]): return "Tech"
if any(keyword in url for keyword in ["horoscope", "astrostyle"]): return "Astrology"
if any(keyword in url for keyword in ["bbci.co.uk/news/politics", "politico.com", "thehill.com"]): return "Politics"
if any(keyword in url for keyword in ["weather.com", "weather.gov", "swpc.noaa.gov", "foxweather"]): return "Earth Weather"
if "phys.org" in url or "aps.org" in url: return "Physics"
return "Uncategorized"
def process_and_store_articles(articles):
vector_db = Chroma(
persist_directory=LOCAL_DB_DIR,
embedding_function=get_embedding_model(),
collection_name=COLLECTION_NAME
)
try:
existing_ids = set(vector_db.get(include=[])["ids"])
logger.info(f"Loaded {len(existing_ids)} existing document IDs from {LOCAL_DB_DIR}.")
except Exception:
existing_ids = set()
logger.info("No existing DB found or it is empty. Starting fresh.")
docs_to_add = []
ids_to_add = []
for article in articles:
cleaned_title = clean_text(article["title"])
cleaned_link = clean_text(article["link"])
doc_id = f"{cleaned_title}|{cleaned_link}|{article['published']}"
if doc_id in existing_ids:
continue
metadata = {
"title": article["title"],
"link": article["link"],
"original_description": article["description"],
"published": article["published"],
"category": article["category"],
"image": article["image"],
}
doc = Document(page_content=clean_text(article["description"]), metadata=metadata)
docs_to_add.append(doc)
ids_to_add.append(doc_id)
existing_ids.add(doc_id)
if docs_to_add:
try:
vector_db.add_documents(documents=docs_to_add, ids=ids_to_add)
vector_db.persist()
logger.info(f"Added {len(docs_to_add)} new articles to DB. Total in DB: {vector_db._collection.count()}")
except Exception as e:
logger.error(f"Error storing articles: {e}")
def download_from_hf_hub():
if not os.path.exists(LOCAL_DB_DIR):
try:
logger.info(f"Downloading Chroma DB from {REPO_ID} to {LOCAL_DB_DIR}...")
snapshot_download(
repo_id=REPO_ID,
repo_type="dataset",
local_dir=".",
local_dir_use_symlinks=False,
allow_patterns=f"{LOCAL_DB_DIR}/**",
token=HF_API_TOKEN
)
logger.info("Finished downloading DB.")
except Exception as e:
logger.warning(f"Could not download from Hugging Face Hub (this is normal on first run): {e}")
else:
logger.info("Local Chroma DB exists, loading existing data.")
def upload_to_hf_hub():
if os.path.exists(LOCAL_DB_DIR):
try:
logger.info(f"Uploading updated Chroma DB '{LOCAL_DB_DIR}' to {REPO_ID}...")
hf_api.upload_folder(
folder_path=LOCAL_DB_DIR,
path_in_repo=LOCAL_DB_DIR,
repo_id=REPO_ID,
repo_type="dataset",
token=HF_API_TOKEN,
commit_message="Update RSS news database"
)
logger.info(f"Database folder '{LOCAL_DB_DIR}' uploaded to: {REPO_ID}")
except Exception as e:
logger.error(f"Error uploading to Hugging Face Hub: {e}")
if __name__ == "__main__":
download_from_hf_hub()
articles = fetch_rss_feeds()
process_and_store_articles(articles)
upload_to_hf_hub() |