Spaces:
Sleeping
Sleeping
import os | |
import threading | |
import hashlib | |
import logging | |
import time | |
from datetime import datetime | |
from flask import Flask, render_template, request, jsonify | |
from rss_processor import fetch_rss_feeds, process_and_store_articles, download_from_hf_hub, upload_to_hf_hub, LOCAL_DB_DIR | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings | |
app = Flask(__name__) | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
loading_complete = True | |
last_update_time = time.time() | |
last_data_hash = None | |
def get_embedding_model(): | |
if not hasattr(get_embedding_model, "model"): | |
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
return get_embedding_model.model | |
def get_vector_db(): | |
if not os.path.exists(LOCAL_DB_DIR): | |
return None | |
try: | |
if not hasattr(get_vector_db, "db_instance"): | |
get_vector_db.db_instance = Chroma( | |
persist_directory=LOCAL_DB_DIR, | |
embedding_function=get_embedding_model(), | |
collection_name="news_articles" | |
) | |
return get_vector_db.db_instance | |
except Exception as e: | |
logger.error(f"Failed to load vector DB: {e}") | |
if hasattr(get_vector_db, "db_instance"): | |
delattr(get_vector_db, "db_instance") | |
return None | |
def load_feeds_in_background(): | |
global loading_complete, last_update_time | |
if not loading_complete: | |
return | |
loading_complete = False | |
try: | |
logger.info("Starting background RSS feed fetch") | |
articles = fetch_rss_feeds() | |
logger.info(f"Fetched {len(articles)} articles") | |
process_and_store_articles(articles) | |
last_update_time = time.time() | |
logger.info("Background feed processing complete") | |
upload_to_hf_hub() | |
except Exception as e: | |
logger.error(f"Error in background feed loading: {e}") | |
finally: | |
loading_complete = True | |
def get_all_docs_from_db(): | |
vector_db = get_vector_db() | |
if not vector_db or vector_db._collection.count() == 0: | |
return {'documents': [], 'metadatas': []} | |
return vector_db.get(include=['documents', 'metadatas']) | |
def format_articles_from_db_results(docs): | |
enriched_articles = [] | |
seen_keys = set() | |
items = [] | |
if isinstance(docs, dict) and 'metadatas' in docs: | |
items = zip(docs.get('documents', []), docs.get('metadatas', [])) | |
elif isinstance(docs, list): | |
items = [(doc.page_content, doc.metadata) for doc, score in docs] | |
for doc_content, meta in items: | |
if not meta: continue | |
title = meta.get("title", "No Title") | |
link = meta.get("link", "") | |
published = meta.get("published", "Unknown Date").strip() | |
key = f"{title}|{link}|{published}" | |
if key not in seen_keys: | |
seen_keys.add(key) | |
try: | |
published_iso = datetime.strptime(published, "%Y-%m-%d %H:%M:%S").isoformat() | |
except (ValueError, TypeError): | |
published_iso = "1970-01-01T00:00:00" | |
enriched_articles.append({ | |
"title": title, | |
"link": link, | |
"description": meta.get("original_description", "No Description"), | |
"category": meta.get("category", "Uncategorized"), | |
"published": published_iso, | |
"image": meta.get("image", "svg"), | |
}) | |
enriched_articles.sort(key=lambda x: x["published"], reverse=True) | |
return enriched_articles | |
def compute_data_hash(categorized_articles): | |
if not categorized_articles: return "" | |
data_str = "" | |
for cat, articles in sorted(categorized_articles.items()): | |
for article in sorted(articles, key=lambda x: x["published"]): | |
data_str += f"{cat}|{article['title']}|{article['link']}|{article['published']}|" | |
return hashlib.sha256(data_str.encode('utf-8')).hexdigest() | |
def index(): | |
global loading_complete, last_update_time, last_data_hash | |
if not os.path.exists(LOCAL_DB_DIR): | |
logger.info(f"No Chroma DB found at '{LOCAL_DB_DIR}', downloading from Hugging Face Hub...") | |
download_from_hf_hub() | |
threading.Thread(target=load_feeds_in_background, daemon=True).start() | |
try: | |
all_docs = get_all_docs_from_db() | |
if not all_docs['metadatas']: | |
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True) | |
enriched_articles = format_articles_from_db_results(all_docs) | |
categorized_articles = {} | |
for article in enriched_articles: | |
cat = article["category"] | |
categorized_articles.setdefault(cat, []).append(article) | |
categorized_articles = dict(sorted(categorized_articles.items())) | |
for cat in categorized_articles: | |
categorized_articles[cat] = categorized_articles[cat][:10] | |
last_data_hash = compute_data_hash(categorized_articles) | |
return render_template("index.html", categorized_articles=categorized_articles, has_articles=True, loading=not loading_complete) | |
except Exception as e: | |
logger.error(f"Error retrieving articles at startup: {e}", exc_info=True) | |
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True) | |
def search(): | |
query = request.form.get('search') | |
if not query: | |
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False}) | |
vector_db = get_vector_db() | |
if not vector_db: | |
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False}) | |
try: | |
results = vector_db.similarity_search_with_relevance_scores(query, k=50, score_threshold=0.5) | |
enriched_articles = format_articles_from_db_results(results) | |
categorized_articles = {} | |
for article in enriched_articles: | |
cat = article["category"] | |
categorized_articles.setdefault(cat, []).append(article) | |
return jsonify({ | |
"categorized_articles": categorized_articles, | |
"has_articles": bool(enriched_articles), | |
"loading": False | |
}) | |
except Exception as e: | |
logger.error(f"Semantic search error: {e}", exc_info=True) | |
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False}), 500 | |
def get_all_articles(category): | |
try: | |
all_docs = get_all_docs_from_db() | |
enriched_articles = format_articles_from_db_results(all_docs) | |
category_articles = [article for article in enriched_articles if article["category"] == category] | |
return jsonify({"articles": category_articles, "category": category}) | |
except Exception as e: | |
logger.error(f"Error fetching all articles for category {category}: {e}") | |
return jsonify({"articles": [], "category": category}), 500 | |
def check_loading(): | |
return jsonify({"status": "complete" if loading_complete else "loading", "last_update": last_update_time}) | |
def get_updates(): | |
global last_update_time, last_data_hash | |
try: | |
all_docs = get_all_docs_from_db() | |
if not all_docs['metadatas']: | |
return jsonify({"articles": {}, "last_update": last_update_time, "has_updates": False}) | |
enriched_articles = format_articles_from_db_results(all_docs) | |
categorized_articles = {} | |
for article in enriched_articles: | |
cat = article["category"] | |
categorized_articles.setdefault(cat, []).append(article) | |
for cat in categorized_articles: | |
categorized_articles[cat] = categorized_articles[cat][:10] | |
current_data_hash = compute_data_hash(categorized_articles) | |
has_updates = last_data_hash != current_data_hash | |
if has_updates: | |
last_data_hash = current_data_hash | |
return jsonify({"articles": categorized_articles, "last_update": last_update_time, "has_updates": True}) | |
else: | |
return jsonify({"articles": {}, "last_update": last_update_time, "has_updates": False}) | |
except Exception as e: | |
logger.error(f"Error fetching updates: {e}") | |
return jsonify({"articles": {}, "last_update": last_update_time, "has_updates": False}), 500 | |
def card_load(): | |
return render_template("card.html") | |
def api_search(): | |
query = request.args.get('q') | |
limit = request.args.get('limit', default=20, type=int) | |
if not query: | |
return jsonify({"error": "Query parameter 'q' is required."}), 400 | |
vector_db = get_vector_db() | |
if not vector_db: | |
return jsonify({"error": "Database not available."}), 503 | |
try: | |
results = vector_db.similarity_search_with_relevance_scores(query, k=limit) | |
formatted_articles = format_articles_from_db_results(results) | |
return jsonify(formatted_articles) | |
except Exception as e: | |
logger.error(f"API Search error: {e}", exc_info=True) | |
return jsonify({"error": "An internal error occurred during search."}), 500 | |
def api_get_articles_by_category(category_name): | |
limit = request.args.get('limit', default=20, type=int) | |
offset = request.args.get('offset', default=0, type=int) | |
vector_db = get_vector_db() | |
if not vector_db: | |
return jsonify({"error": "Database not available."}), 503 | |
try: | |
results = vector_db.get(where={"category": category_name}, include=['documents', 'metadatas']) | |
formatted_articles = format_articles_from_db_results(results) | |
paginated_results = formatted_articles[offset : offset + limit] | |
return jsonify({ | |
"category": category_name, | |
"total_articles": len(formatted_articles), | |
"articles": paginated_results | |
}) | |
except Exception as e: | |
logger.error(f"API Category fetch error: {e}", exc_info=True) | |
return jsonify({"error": "An internal error occurred."}), 500 | |
def api_get_categories(): | |
vector_db = get_vector_db() | |
if not vector_db: | |
return jsonify({"error": "Database not available."}), 503 | |
try: | |
all_metadata = vector_db.get(include=['metadatas'])['metadatas'] | |
if not all_metadata: | |
return jsonify([]) | |
unique_categories = sorted(list({meta['category'] for meta in all_metadata if 'category' in meta})) | |
return jsonify(unique_categories) | |
except Exception as e: | |
logger.error(f"API Categories fetch error: {e}", exc_info=True) | |
return jsonify({"error": "An internal error occurred."}), 500 | |
def api_get_status(): | |
return jsonify({ | |
"status": "complete" if loading_complete else "loading", | |
"last_update_time": last_update_time | |
}) | |
if __name__ == "__main__": | |
app.run(host="0.0.0.0", port=7860) |