Spaces:
Runtime error
Runtime error
File size: 9,797 Bytes
030df3b 0c11cd5 b2c1451 030df3b 0c11cd5 030df3b 6de914c 030df3b 0c11cd5 b2c1451 0c11cd5 030df3b b2c1451 030df3b b2c1451 030df3b b2c1451 030df3b b2c1451 030df3b b2c1451 030df3b 0c11cd5 b2c1451 030df3b b2c1451 030df3b b2c1451 030df3b b2c1451 030df3b 0c11cd5 b2c1451 33b3ad3 b2c1451 33b3ad3 b2c1451 33b3ad3 b2c1451 030df3b 1084fb5 030df3b b2c1451 030df3b b2c1451 030df3b 0c11cd5 030df3b 0c11cd5 030df3b b2c1451 030df3b 0c11cd5 b2c1451 0c11cd5 030df3b 0c11cd5 030df3b 6de914c 030df3b 0c11cd5 6de914c 0c11cd5 030df3b 0c11cd5 030df3b b2c1451 0c11cd5 030df3b b2c1451 030df3b 0c11cd5 030df3b 0c11cd5 030df3b b2c1451 030df3b 0c11cd5 030df3b 0c11cd5 b2c1451 0c11cd5 030df3b 0c11cd5 030df3b 0c11cd5 b2c1451 0c11cd5 030df3b b2c1451 030df3b 0c11cd5 030df3b 0c11cd5 030df3b b2c1451 030df3b 0c11cd5 030df3b 0c11cd5 030df3b 0c11cd5 030df3b b2c1451 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import subprocess
import os
import shutil
from pathlib import Path
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download, login
import torch
import logging
# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Configuration ---
LORA_PATH = "ckpt/SR_LoRA/model_20001.pkl"
VAE_PATH = "ckpt/SR_VAE/vae_encoder_20001.pt"
DAPE_PATH = "ckpt/DAPE/DAPE.pth"
CHECKPOINT_FILES_CONFIG = {
"SR_LoRA": {"repo_id": "bryandmc/Chain-of-Zoom", "filename": "SR_LoRA/model_20001.pkl", "target_path": LORA_PATH},
"SR_VAE": {"repo_id": "bryandmc/Chain-of-Zoom", "filename": "SR_VAE/vae_encoder_20001.pt", "target_path": VAE_PATH},
"DAPE": {"repo_id": "bryandmc/Chain-of-Zoom", "filename": "DAPE/DAPE.pth", "target_path": DAPE_PATH},
}
# --- Device Detection ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {DEVICE}")
# --- Hugging Face Token ---
HF_AUTH_TOKEN = os.environ.get("HF_TOKEN")
if HF_AUTH_TOKEN:
try:
login(token=HF_AUTH_TOKEN)
logger.info("Successfully logged in to Hugging Face Hub.")
except Exception as e:
logger.warning(f"Hugging Face login failed: {e}")
else:
logger.warning("HF_TOKEN not found. Downloads of gated models may fail.")
# --- Model Download Function ---
def download_coz_support_models():
logger.info("Checking and downloading CoZ support models...")
for model_key, model_info in CHECKPOINT_FILES_CONFIG.items():
target_file_path = Path(model_info["target_path"])
if not target_file_path.exists():
logger.info(f"Downloading {model_key} from {model_info['repo_id']}...")
target_file_path.parent.mkdir(parents=True, exist_ok=True)
try:
cached_file_path = hf_hub_download(
repo_id=model_info['repo_id'],
filename=model_info['filename'],
token=HF_AUTH_TOKEN,
force_download=False,
resume_download=True
)
shutil.copy(cached_file_path, target_file_path)
logger.info(f"{model_key} downloaded to {target_file_path}")
except Exception as e:
logger.error(f"Error downloading {model_key}: {e}")
raise
else:
logger.info(f"{model_key} already exists at {target_file_path}")
logger.info("All CoZ support models checked.")
# Download models at startup
try:
logger.info("Starting model download...")
download_coz_support_models()
logger.info("Model download completed.")
except Exception as e:
logger.error(f"Failed to download models: {e}")
raise
# --- Preload Stable Diffusion Model ---
logger.info("Preloading Stable Diffusion model configuration...")
try:
from diffusers import StableDiffusion3Pipeline
pipeline = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
use_auth_token=HF_AUTH_TOKEN
)
logger.info("Stable Diffusion 3 model configuration preloaded.")
except Exception as e:
logger.error(f"Failed to preload Stable Diffusion model: {e}")
raise
# --- Main Inference Function ---
def run_chain_of_zoom(input_image: Image.Image, magnification: int, caption: str, seed: int):
if input_image is None:
logger.error("No input image provided.")
raise gr.Error("Please upload an image.")
logger.info(f"Starting inference with magnification={magnification}, seed={seed}, caption={caption}")
with tempfile.TemporaryDirectory() as temp_base_str:
temp_base_dir = Path(temp_base_str)
input_img_parent_dir = temp_base_dir / "input_images_root"
input_img_parent_dir.mkdir(parents=True, exist_ok=True)
input_image_filename = "source_image.png"
input_image_path = input_img_parent_dir / input_image_filename
input_image.save(input_image_path, "PNG")
logger.info(f"Input image saved to {input_image_path}")
output_img_dir = temp_base_dir / "output_data"
output_img_dir.mkdir(parents=True, exist_ok=True)
# Check if inference_coz.py exists
if not Path("inference_coz.py").exists():
logger.error("inference_coz.py not found in repository.")
raise gr.Error("inference_coz.py not found in repository. Please check the Chain-of-Zoom repository.")
command = [
"python", "inference_coz.py",
"-i", str(input_img_parent_dir),
"-o", str(output_img_dir),
"--rec_type", "recursive_multiscale",
"--prompt_type", "vlm",
"--lora_path", LORA_PATH,
"--vae_path", VAE_PATH,
"--pretrained_model_name_or_path", "stabilityai/stable-diffusion-3-medium-diffusers",
"--ram_ft_path", DAPE_PATH,
"--efficient_memory",
"--magnification", str(magnification),
"--seed", str(seed),
"--image_num", "16" if DEVICE == "cpu" else "32",
]
if DEVICE == "cpu":
command.append("--no_cuda") # Assumes inference_coz.py supports this flag
if caption and caption.strip():
command.extend(["--caption", caption.strip()])
if HF_AUTH_TOKEN:
command.extend(["--hf_token", HF_AUTH_TOKEN])
logger.info(f"Running command: {' '.join(command)}")
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
stdout_lines = []
stderr_lines = []
output_image_path_from_log = None
# Stream stdout
if process.stdout:
for line in iter(process.stdout.readline, ""):
logger.info(f"[CoZ STDOUT] {line.strip()}")
stdout_lines.append(line)
if "Saving image to" in line:
try:
output_image_path_from_log = line.split("Saving image to")[-1].strip()
except Exception:
pass
# Stream stderr
if process.stderr:
for line in iter(process.stderr.readline, ""):
logger.warning(f"[CoZ STDERR] {line.strip()}")
stderr_lines.append(line)
process.wait()
if process.returncode != 0:
error_message = f"Chain-of-Zoom failed.\nSTDOUT:\n{''.join(stdout_lines[-5:])}\nSTDERR:\n{''.join(stderr_lines[-5:])}"
logger.error(error_message)
raise gr.Error(f"Processing failed: {error_message}")
# Find output image
final_output_image_path = None
if output_image_path_from_log and Path(output_image_path_from_log).exists():
final_output_image_path = Path(output_image_path_from_log)
else:
processed_output_subdir = output_img_dir / input_img_parent_dir.name
potential_files = list(processed_output_subdir.glob(f"{Path(input_image_filename).stem}_x{magnification}_*.png"))
if potential_files:
final_output_image_path = potential_files[0]
if not final_output_image_path or not final_output_image_path.exists():
all_files = list(output_img_dir.rglob("*"))
logger.error(f"Output image not found in {output_img_dir}. Files found: {all_files}")
raise gr.Error(f"Output image not found in {output_img_dir}. Files found: {all_files}")
output_image = Image.open(final_output_image_path)
logger.info(f"Output image generated: {final_output_image_path}")
return output_image
# --- Gradio Interface ---
css = """
.gradio-container { font-family: 'IBM Plex Sans', sans-serif; }
.gr-button { color: white; border-color: black; background: black; }
footer { display: none !important; }
"""
title = "Chain-of-Zoom: Extreme Image Super-Resolution Demo"
description = """
Upload an image and select a magnification factor. Provide an optional caption (if empty, a VLM will generate one).
Optimized for CPU and GPU environments. Ensure HF_TOKEN is set in Space secrets for model access.
[Chain-of-Zoom GitHub](https://github.com/bryanswkim/Chain-of-Zoom)
"""
article = "<p style='text-align: center;'><a href='https://github.com/bryanswkim/Chain-of-Zoom' target='_blank'>Chain-of-Zoom GitHub</a></p>"
logger.info("Initializing Gradio interface...")
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown(f"<h1 style='text-align: center'>{title}</h1>")
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
input_image_gr = gr.Image(type="pil", label="Input Image")
magnification_gr = gr.Slider(minimum=2, maximum=16, step=1, value=4, label="Magnification Factor (2x-16x)")
caption_gr = gr.Textbox(label="Optional Caption", placeholder="e.g., a photo of a cat")
seed_gr = gr.Number(label="Seed", value=42, precision=0)
run_button = gr.Button("Zoom In!", variant="primary")
with gr.Column(scale=1):
output_image_gr = gr.Image(type="pil", label="Output Super-Resolved Image")
gr.Markdown(article)
run_button.click(
fn=run_chain_of_zoom,
inputs=[input_image_gr, magnification_gr, caption_gr, seed_gr],
outputs=output_image_gr
)
if __name__ == "__main__":
logger.info("Launching Gradio app...")
try:
demo.launch(server_name="0.0.0.0", server_port=7860)
logger.info("Gradio app launched successfully.")
except Exception as e:
logger.error(f"Failed to launch Gradio app: {e}")
raise |