import gradio as gr from huggingface_hub import hf_hub_download from llama_cpp import Llama # Define model details MODEL_REPO = "TheBloke/vicuna-13B-v1.5-16K-GGUF" # You can swap this for Mistral-7B or another GGUF model MODEL_FILE = "vicuna-13b-v1.5-16k.Q4_K_M.gguf" # 4-bit quantized model file # Download the quantized model from Hugging Face model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE) # Load the model with llama.cpp for CPU-only inference llm = Llama( model_path=model_path, n_gpu_layers=0, # Set to 0 for CPU-only n_threads=4, # Adjust based on CPU cores (e.g., 4 for quad-core) n_batch=512, # Batch size for inference n_ctx=2048, # Context length (adjust based on RAM; 2048 fits ~16 GB) verbose=False # Reduce logging for cleaner output ) # Define the inference function def generate_text(prompt, max_tokens=256, temperature=0.8, top_p=0.95): try: output = llm( prompt, max_tokens=max_tokens, temperature=temperature, top_p=top_p, repeat_penalty=1.1 ) return output["choices"][0]["text"].strip() except Exception as e: return f"Error: {str(e)}" # Create Gradio interface interface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."), gr.Slider(label="Max Tokens", minimum=50, maximum=512, value=256, step=10), gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.8, step=0.1), gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.95, step=0.05) ], outputs=gr.Textbox(label="Generated Text"), title="Quantized LLM on Hugging Face Spaces", description="Run a 4-bit quantized Vicuna-13B model on CPU using llama.cpp", theme="default" ) # Launch the app if __name__ == "__main__": interface.launch(server_name="0.0.0.0", server_port=7860)