import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer def generate_text(prompt, length): model_name = "EleutherAI/gpt-neo-1.3B" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(**inputs, max_length=length, num_beams=4, early_stopping=True) return tokenizer.decode(output[0], skip_special_tokens=True) demo = gr.Interface( fn=generate_text, inputs=["text", "int"], outputs="text", title="Hugging Face Text Generation", description="Enter a prompt and a length, and this chatbot will generate text using a pre-trained GPT-Neo model." ) if __name__ == "__main__": demo.launch()