File size: 18,050 Bytes
e889bb7
f3b6eeb
 
03a2414
f3b6eeb
03a2414
 
 
 
e889bb7
03a2414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e889bb7
f3b6eeb
e889bb7
03a2414
e889bb7
03a2414
 
e889bb7
 
 
 
03a2414
e889bb7
 
f3b6eeb
e889bb7
03a2414
e889bb7
 
 
03a2414
e889bb7
f3b6eeb
03a2414
 
f3b6eeb
e889bb7
03a2414
 
 
 
 
 
13f9441
c9ee5e6
ef71876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e889bb7
ef71876
 
 
13f9441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a2414
e889bb7
 
03a2414
 
 
 
 
e889bb7
c9ee5e6
e889bb7
13f9441
e889bb7
 
03a2414
 
e889bb7
03a2414
 
 
 
ae3c8d7
c9ee5e6
13f9441
e889bb7
13f9441
e889bb7
13f9441
 
e889bb7
13f9441
03a2414
13f9441
c9ee5e6
 
13f9441
 
 
 
03a2414
e889bb7
13f9441
 
 
 
 
 
 
 
03a2414
13f9441
 
e889bb7
13f9441
03a2414
13f9441
03a2414
 
13f9441
 
 
 
 
ae3c8d7
13f9441
 
 
03a2414
 
e889bb7
03a2414
13f9441
 
 
 
 
 
 
 
 
 
 
e889bb7
 
03a2414
e889bb7
13f9441
e889bb7
13f9441
 
ae3c8d7
03a2414
 
13f9441
f3b6eeb
03a2414
13f9441
 
e889bb7
 
13f9441
 
03a2414
13f9441
 
ae3c8d7
13f9441
 
03a2414
 
 
 
 
e889bb7
13f9441
 
 
 
 
 
 
 
 
 
 
e889bb7
13f9441
e889bb7
 
13f9441
e889bb7
13f9441
 
 
e889bb7
f3b6eeb
e889bb7
03a2414
f3b6eeb
13f9441
e889bb7
 
03a2414
13f9441
 
03a2414
13f9441
 
 
03a2414
13f9441
f3b6eeb
03a2414
13f9441
e889bb7
03a2414
 
13f9441
 
03a2414
13f9441
 
e889bb7
 
f3b6eeb
e889bb7
 
 
 
13f9441
 
 
 
 
 
e889bb7
 
13f9441
e889bb7
13f9441
e889bb7
 
 
f3b6eeb
ef71876
 
13f9441
ef71876
ae3c8d7
ef71876
 
13f9441
 
 
ef71876
13f9441
 
ef71876
 
 
 
 
 
e889bb7
03a2414
13f9441
ef71876
 
e889bb7
13f9441
 
e889bb7
ef71876
e889bb7
13f9441
 
 
ef71876
13f9441
ef71876
13f9441
ef71876
13f9441
 
ef71876
13f9441
ef71876
 
 
13f9441
 
 
ef71876
13f9441
ef71876
13f9441
ef71876
13f9441
 
ef71876
13f9441
ef71876
e889bb7
 
 
 
 
 
 
 
13f9441
e889bb7
13f9441
e889bb7
 
 
 
13f9441
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# memory_logic.py
import os
import json
import time
from datetime import datetime
import logging
import re
import threading

# Conditionally import heavy dependencies
try:
    from sentence_transformers import SentenceTransformer
    import faiss
    import numpy as np
except ImportError:
    SentenceTransformer, faiss, np = None, None, None
    logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")

try:
    import sqlite3
except ImportError:
    sqlite3 = None
    logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")

try:
    from datasets import load_dataset, Dataset
except ImportError:
    load_dataset, Dataset = None, None
    logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")


logger = logging.getLogger(__name__)
# Suppress verbose logs from dependencies
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
    if logging.getLogger(lib_name): # Check if logger exists
        logging.getLogger(lib_name).setLevel(logging.WARNING)


# --- Configuration (Read directly from environment variables) ---
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper() #HF_DATASET, RAM, SQLITE
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") # Changed default path
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain") # Example
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")     # Example

# --- Globals for RAG within this module ---
_embedder = None
_dimension = 384 # Default, will be set by embedder
_faiss_memory_index = None
_memory_items_list = []  # Stores JSON strings of memory objects for RAM, or loaded from DB/HF
_faiss_rules_index = None
_rules_items_list = []   # Stores rule text strings

_initialized = False
_init_lock = threading.Lock()

# --- Helper: SQLite Connection ---
def _get_sqlite_connection():
    if not sqlite3:
        raise ImportError("sqlite3 module is required for SQLite backend but not found.")
    db_dir = os.path.dirname(SQLITE_DB_PATH)
    if db_dir and not os.path.exists(db_dir):
        os.makedirs(db_dir, exist_ok=True)
    return sqlite3.connect(SQLITE_DB_PATH, timeout=10)

def _init_sqlite_tables():
    if STORAGE_BACKEND != "SQLITE" or not sqlite3:
        return
    try:
        with _get_sqlite_connection() as conn:
            cursor = conn.cursor()
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS memories (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    memory_json TEXT NOT NULL,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                )
            """)
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS rules (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    rule_text TEXT NOT NULL UNIQUE,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                )
            """)
            conn.commit()
        logger.info("SQLite tables for memories and rules checked/created.")
    except Exception as e:
        logger.error(f"SQLite table initialization error: {e}", exc_info=True)


def _build_faiss_index(items_list, text_extraction_fn):
    """Builds a FAISS index from a list of items."""
    if not _embedder:
        logger.error("Cannot build FAISS index: Embedder not available.")
        return None
    
    index = faiss.IndexFlatL2(_dimension)
    if not items_list:
        return index

    logger.info(f"Building FAISS index for {len(items_list)} items...")
    texts_to_embed = [text_extraction_fn(item) for item in items_list]
    
    try:
        embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
        embeddings_np = np.array(embeddings, dtype=np.float32)
        if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(items_list):
            index.add(embeddings_np)
            logger.info(f"FAISS index built successfully with {index.ntotal} items.")
        else:
            logger.error(f"FAISS build failed: Embeddings shape error. Expected ({len(items_list)}, {_dimension}), Got {getattr(embeddings_np, 'shape', 'N/A')}")
            return faiss.IndexFlatL2(_dimension) # Return empty index on failure
    except Exception as e:
        logger.error(f"Error building FAISS index: {e}", exc_info=True)
        return faiss.IndexFlatL2(_dimension) # Return empty index on failure

    return index

# --- Initialization ---
def initialize_memory_system():
    global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
    
    with _init_lock:
        if _initialized:
            return

        logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
        init_start_time = time.time()

        if not SentenceTransformer or not faiss or not np:
            logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
            return
        
        if not _embedder:
            try:
                logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
                _embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
                _dimension = _embedder.get_sentence_embedding_dimension() or 384
            except Exception as e:
                logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
                return

        if STORAGE_BACKEND == "SQLITE": _init_sqlite_tables()

        # Load Memories from persistent storage
        temp_memories_json = []
        if STORAGE_BACKEND == "SQLITE":
            try: temp_memories_json = [row[0] for row in _get_sqlite_connection().execute("SELECT memory_json FROM memories")]
            except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
        elif STORAGE_BACKEND == "HF_DATASET":
            try:
                logger.info(f"Loading memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
                dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
                if "train" in dataset and "memory_json" in dataset["train"].column_names:
                    temp_memories_json = [m for m in dataset["train"]["memory_json"] if isinstance(m, str) and m.strip()]
                    logger.info(f"Loaded {len(temp_memories_json)} valid memories from HF Dataset.")
                else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} has no 'train' split or 'memory_json' column.")
            except Exception as e: logger.error(f"Error loading memories from HF Dataset: {e}", exc_info=True)
        
        _memory_items_list = temp_memories_json
        
        # Build Memory FAISS Index
        _faiss_memory_index = _build_faiss_index(
            _memory_items_list, 
            lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}\nTakeaway: {json.loads(m).get('metrics', {}).get('takeaway', 'N/A')}"
        )

        # Load Rules from persistent storage
        temp_rules_text = []
        if STORAGE_BACKEND == "SQLITE":
            try: temp_rules_text = [row[0] for row in _get_sqlite_connection().execute("SELECT rule_text FROM rules")]
            except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
        elif STORAGE_BACKEND == "HF_DATASET":
            try:
                logger.info(f"Loading rules from HF Dataset: {HF_RULES_DATASET_REPO}")
                dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
                if "train" in dataset and "rule_text" in dataset["train"].column_names:
                    temp_rules_text = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
                    logger.info(f"Loaded {len(temp_rules_text)} valid rules from HF Dataset.")
                else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} has no 'train' split or 'rule_text' column.")
            except Exception as e: logger.error(f"Error loading rules from HF Dataset: {e}", exc_info=True)

        _rules_items_list = sorted(list(set(temp_rules_text)))
        
        # Build Rules FAISS Index
        _faiss_rules_index = _build_faiss_index(_rules_items_list, lambda r: r)

        _initialized = True
        logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")


def _verify_and_rebuild_if_needed(index, items_list, text_extraction_fn):
    """Self-healing function to ensure FAISS index is synced with the item list."""
    if not index or index.ntotal != len(items_list):
        logger.warning(
            f"FAISS index mismatch detected (Index: {index.ntotal if index else 'None'}, List: {len(items_list)}). "
            "Rebuilding index from in-memory cache."
        )
        return _build_faiss_index(items_list, text_extraction_fn)
    return index


# --- Memory Operations (Semantic) ---
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
    global _memory_items_list, _faiss_memory_index
    if not _initialized: initialize_memory_system()
    if not _embedder or not _faiss_memory_index:
        return False, "Memory system not ready for adding entries."

    memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
    memory_json_str = json.dumps(memory_obj)
    text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
    
    try:
        embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
        embedding_np = np.array(embedding, dtype=np.float32)
        
        _faiss_memory_index.add(embedding_np)
        _memory_items_list.append(memory_json_str)
        
        if STORAGE_BACKEND == "SQLITE":
            with _get_sqlite_connection() as conn:
                conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,)); conn.commit()
        elif STORAGE_BACKEND == "HF_DATASET":
            Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
        
        logger.info(f"Added memory. Cache size: {len(_memory_items_list)}, FAISS size: {_faiss_memory_index.ntotal}")
        return True, "Memory added successfully."
    except Exception as e:
        logger.error(f"Error adding memory entry: {e}", exc_info=True)
        return False, f"Error adding memory: {e}"

def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
    global _faiss_memory_index
    if not _initialized: initialize_memory_system()
    
    # Self-healing: Verify index is synced with cache, rebuild if not.
    _faiss_memory_index = _verify_and_rebuild_if_needed(
        _faiss_memory_index, _memory_items_list,
        lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}\nTakeaway: {json.loads(m).get('metrics', {}).get('takeaway', 'N/A')}"
    )

    if not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
        logger.debug("Cannot retrieve memories: index is empty.")
        return []

    try:
        query_embedding = _embedder.encode([query], convert_to_tensor=False)
        query_embedding_np = np.array(query_embedding, dtype=np.float32)
        distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
        
        results = [json.loads(_memory_items_list[i]) for i in indices[0] if 0 <= i < len(_memory_items_list)]
        logger.info(f"Retrieved {len(results)} memories for query: '{query[:50]}...'")
        return results
    except Exception as e:
        logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
        return []


# --- Rule (Insight) Operations (Semantic) ---
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
    global _rules_items_list, _faiss_rules_index
    if not _initialized: initialize_memory_system()

    rule_text = rule_text.strip()
    if not rule_text or "duplicate" == rule_text or rule_text in _rules_items_list:
        return False, "duplicate or invalid"
    if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", rule_text, re.I):
        return False, "Invalid rule format."

    try:
        embedding = _embedder.encode([rule_text], convert_to_tensor=False)
        embedding_np = np.array(embedding, dtype=np.float32)
        _faiss_rules_index.add(embedding_np)
        _rules_items_list.append(rule_text)
        _rules_items_list.sort()

        if STORAGE_BACKEND == "SQLITE":
            with _get_sqlite_connection() as conn:
                conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,)); conn.commit()
        elif STORAGE_BACKEND == "HF_DATASET":
            Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
        return True, "Rule added successfully."
    except Exception as e:
        logger.error(f"Error adding rule entry: {e}", exc_info=True)
        return False, f"Error adding rule: {e}"

def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
    global _faiss_rules_index
    if not _initialized: initialize_memory_system()

    _faiss_rules_index = _verify_and_rebuild_if_needed(_faiss_rules_index, _rules_items_list, lambda r: r)

    if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
    try:
        query_embedding = _embedder.encode([query], convert_to_tensor=False)
        query_embedding_np = np.array(query_embedding, dtype=np.float32)
        distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
        return [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
    except Exception as e:
        logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
        return []

def remove_rule_entry(rule_text_to_delete: str) -> bool:
    global _rules_items_list, _faiss_rules_index
    if not _initialized: initialize_memory_system()
    rule_text_to_delete = rule_text_to_delete.strip()
    if rule_text_to_delete not in _rules_items_list: return False
    try:
        _rules_items_list.remove(rule_text_to_delete)
        _faiss_rules_index = _build_faiss_index(_rules_items_list, lambda r: r)
        
        if STORAGE_BACKEND == "SQLITE":
            with _get_sqlite_connection() as conn:
                conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,)); conn.commit()
        elif STORAGE_BACKEND == "HF_DATASET":
            Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
        return True
    except Exception as e:
        logger.error(f"Error removing rule entry: {e}", exc_info=True)
        return False

# --- Utility functions to get all data (for UI display, etc.) ---
def get_all_rules_cached() -> list[str]:
    if not _initialized: initialize_memory_system()
    return list(_rules_items_list)

def get_all_memories_cached() -> list[dict]:
    if not _initialized: initialize_memory_system()
    return [json.loads(m) for m in _memory_items_list if m]

def clear_all_memory_data_backend() -> bool:
    global _memory_items_list, _faiss_memory_index
    if not _initialized: initialize_memory_system()
    _memory_items_list = []
    if _faiss_memory_index: _faiss_memory_index.reset()
    try:
        if STORAGE_BACKEND == "SQLITE":
            with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
        elif STORAGE_BACKEND == "HF_DATASET":
            Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
        logger.info("All memories cleared.")
        return True
    except Exception as e:
        logger.error(f"Error clearing all memory data: {e}"); return False

def clear_all_rules_data_backend() -> bool:
    global _rules_items_list, _faiss_rules_index
    if not _initialized: initialize_memory_system()
    _rules_items_list = []
    if _faiss_rules_index: _faiss_rules_index.reset()
    try:
        if STORAGE_BACKEND == "SQLITE":
            with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
        elif STORAGE_BACKEND == "HF_DATASET":
            Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
        logger.info("All rules cleared.")
        return True
    except Exception as e:
        logger.error(f"Error clearing all rules data: {e}"); return False

FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")

def save_faiss_indices_to_disk():
    if not _initialized or not faiss: return
    faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
    if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
    if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
        faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
    if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
        faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)

def load_faiss_indices_from_disk():
    global _faiss_memory_index, _faiss_rules_index
    if not _initialized or not faiss: return
    if os.path.exists(FAISS_MEMORY_PATH):
        _faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
    if os.path.exists(FAISS_RULES_PATH):
        _faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)