Spaces:
Sleeping
Sleeping
File size: 8,977 Bytes
2cbb464 0db618a 548062a 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 2cbb464 0db618a 2cbb464 0db618a 2cbb464 20c5dc9 0db618a 20c5dc9 2cbb464 0db618a 2cbb464 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 2cbb464 20c5dc9 2cbb464 0db618a 2cbb464 0db618a 2cbb464 0db618a 20c5dc9 0db618a 2cbb464 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 20c5dc9 2cbb464 0db618a 20c5dc9 0db618a 20c5dc9 0db618a 2cbb464 0db618a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import base64
import io
import random
import os
import uuid
import json # <-- Import the json library
# --- Configuration & Setup ---
# Create a directory to store temporary output files
TEMP_DIR = "temp_outputs"
os.makedirs(TEMP_DIR, exist_ok=True)
# --- Core Image Processing Logic (Unchanged) ---
# ... (All the functions like scramble_image, unscramble_image, etc., are the same)
def process_image_for_grid(image_pil, grid_size):
if image_pil is None: return None, 0, 0
img_width, img_height = image_pil.size
tile_w, tile_h = img_width // grid_size, img_height // grid_size
if tile_w == 0 or tile_h == 0:
raise gr.Error(f"Image is too small for a {grid_size}x{grid_size} grid.")
cropped_image = image_pil.crop((0, 0, tile_w * grid_size, tile_h * grid_size))
return cropped_image, tile_w, tile_h
def scramble_image(image_pil, grid_size, seed):
cropped_image, tile_w, tile_h = process_image_for_grid(image_pil, grid_size)
tiles = [cropped_image.crop((j * tile_w, i * tile_h, (j + 1) * tile_w, (i + 1) * tile_h)) for i in range(grid_size) for j in range(grid_size)]
rng = np.random.default_rng(seed=int(seed))
scramble_map = rng.permutation(len(tiles))
scrambled_image = Image.new('RGB', cropped_image.size)
for new_pos_index, original_tile_index in enumerate(scramble_map):
i, j = divmod(new_pos_index, grid_size)
scrambled_image.paste(tiles[original_tile_index], (j * tile_w, i * tile_h))
return scrambled_image, scramble_map
def unscramble_image(scrambled_pil, scramble_map, grid_size):
cropped_image, tile_w, tile_h = process_image_for_grid(scrambled_pil, grid_size)
scrambled_tiles = [cropped_image.crop((j * tile_w, i * tile_h, (j + 1) * tile_w, (i + 1) * tile_h)) for i in range(grid_size) for j in range(grid_size)]
unscrambled_image = Image.new('RGB', cropped_image.size)
for new_pos_index, original_pos_index in enumerate(scramble_map):
i, j = divmod(original_pos_index, grid_size)
unscrambled_image.paste(scrambled_tiles[new_pos_index], (j * tile_w, i * tile_h))
return unscrambled_image
def create_mapping_visualization(scramble_map, grid_size):
map_size=(512, 512)
vis_image = Image.new('RGB', map_size, color='lightgray')
draw = ImageDraw.Draw(vis_image)
try: font = ImageFont.truetype("arial.ttf", size=max(10, 32 - grid_size * 2))
except IOError: font = ImageFont.load_default()
tile_w, tile_h = map_size[0] // grid_size, map_size[1] // grid_size
for new_pos_index, original_pos_index in enumerate(scramble_map):
i, j = divmod(new_pos_index, grid_size)
x0, y0 = j * tile_w, i * tile_h
draw.rectangle([x0, y0, x0 + tile_w, y0 + tile_h], outline='black')
text = str(original_pos_index)
text_bbox = draw.textbbox((0, 0), text, font=font)
text_w, text_h = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
draw.text((x0 + (tile_w - text_w) / 2, y0 + (tile_h - text_h) / 2), text, fill='black', font=font)
return vis_image
def pil_to_base64(pil_image):
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def create_canvas_html(base64_string, width, height):
return f"""
<div style="display: flex; justify-content: center; align-items: center; background: #f0f0f0;">
<canvas id="unscrambled-canvas" width="{width}" height="{height}" style="max-width: 100%; max-height: 512px; object-fit: contain;"></canvas>
</div>
<script>
function drawImageOnCanvas() {{
const canvas = document.getElementById('unscrambled-canvas');
if (!canvas) return;
const ctx = canvas.getContext('2d');
const img = new Image();
img.src = "{base64_string}";
img.onload = () => {{ ctx.clearRect(0, 0, canvas.width, canvas.height); ctx.drawImage(img, 0, 0, canvas.width, canvas.height); }};
canvas.oncontextmenu = (e) => {{ e.preventDefault(); return false; }};
}}
setTimeout(drawImageOnCanvas, 100);
</script>
"""
# --- Main Gradio Function ---
def process_and_display(input_image, grid_size, seed):
"""
Main orchestrator function. Saves PNGs and JSON and returns all file paths.
"""
if input_image is None:
# Return empty placeholders for all outputs
return None, "<div>Please upload an image to begin.</div>", None, None, None
# 1. Scramble the image
scrambled_img, scramble_map = scramble_image(input_image, grid_size, seed)
# 2. Unscramble for canvas preview
unscrambled_img = unscramble_image(scrambled_img, scramble_map, grid_size)
base64_unscrambled = pil_to_base64(unscrambled_img)
canvas_html = create_canvas_html(base64_unscrambled, unscrambled_img.width, unscrambled_img.height)
# 3. Create map visualization
map_viz_img = create_mapping_visualization(scramble_map, grid_size)
# --- Save all files and get their paths ---
unique_id = uuid.uuid4()
# Save the scrambled image PNG
scrambled_filepath = os.path.join(TEMP_DIR, f"{unique_id}_scrambled.png")
scrambled_img.save(scrambled_filepath)
# Save the map visualization PNG
map_viz_filepath = os.path.join(TEMP_DIR, f"{unique_id}_map.png")
map_viz_img.save(map_viz_filepath)
# NEW: Create and save the JSON map file
map_json_filepath = os.path.join(TEMP_DIR, f"{unique_id}_map.json")
map_data = {
"gridSize": grid_size,
"seed": seed,
"width": scrambled_img.width,
"height": scrambled_img.height,
"scrambleMap": scramble_map.tolist() # Convert numpy array for JSON
}
with open(map_json_filepath, 'w') as f:
json.dump(map_data, f, indent=2)
# 4. Return all necessary file paths and the canvas HTML
return scrambled_filepath, canvas_html, map_viz_filepath, scrambled_filepath, map_json_filepath
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🖼️ Secure Image Scrambler & Viewer (v3)
Upload an image to create a scrambled `.png` file and a `.json` map file.
The unscrambled original can be viewed in a protected preview window that prevents easy downloading.
"""
)
with gr.Row():
with gr.Column(scale=1, min_width=350):
input_image = gr.Image(
type="pil",
label="Upload Image or Paste from Clipboard/URL",
sources=["upload", "clipboard"]
)
with gr.Accordion("Settings", open=True):
grid_size_slider = gr.Slider(minimum=2, maximum=32, value=8, step=1, label="Grid Size (NxN)")
seed_input = gr.Number(value=lambda: random.randint(0, 99999), label="Scramble Seed")
submit_btn = gr.Button("Scramble & Process", variant="primary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Downloads"):
gr.Markdown("### Scrambled Image")
scrambled_output = gr.Image(
label="Scrambled Image Preview",
type="filepath",
interactive=False,
)
downloadable_png = gr.File(
label="Download Scrambled PNG File",
interactive=False
)
gr.Markdown("---")
gr.Markdown("### Scrambling Map")
downloadable_json = gr.File(
label="Download Map JSON File",
interactive=False
)
with gr.TabItem("Unscrambled Preview (Protected)"):
unscrambled_canvas = gr.HTML(
label="Unscrambled Preview (Not directly downloadable)"
)
with gr.TabItem("Map Visualization"):
mapping_output = gr.Image(
label="Mapping Key Visualization",
type="filepath",
interactive=False
)
# Connect the button to the main function, mapping all outputs correctly
submit_btn.click(
fn=process_and_display,
inputs=[input_image, grid_size_slider, seed_input],
outputs=[
scrambled_output, # Receives scrambled_filepath for display
unscrambled_canvas, # Receives canvas_html
mapping_output, # Receives map_viz_filepath
downloadable_png, # Receives scrambled_filepath for download
downloadable_json # Receives map_json_filepath for download
]
)
demo.launch() |