Spaces:
Runtime error
Runtime error
File size: 8,765 Bytes
1896bc8 b537793 01b5c05 844c526 b537793 e38568c b537793 e38568c 01b5c05 e38568c 059fe8c e38568c 059fe8c e38568c 059fe8c e38568c 844c526 e38568c 844c526 e38568c 844c526 e38568c 844c526 e38568c 844c526 059fe8c 844c526 e38568c c497b41 e38568c 844c526 e38568c 844c526 e38568c 1896bc8 e38568c 1896bc8 e38568c 1896bc8 e38568c 1896bc8 e38568c 1896bc8 844c526 e38568c 844c526 34db65e 844c526 e38568c 844c526 e38568c 059fe8c 34db65e 059fe8c e38568c 1896bc8 e38568c b537793 e38568c 1896bc8 e38568c 1896bc8 5139ca9 d67a821 1896bc8 844c526 b537793 1896bc8 4a9f0a0 1896bc8 b537793 1896bc8 b537793 1896bc8 be3e79e 1896bc8 e38568c 1896bc8 b537793 1896bc8 1056de2 1896bc8 844c526 1896bc8 e137273 b537793 1896bc8 e38568c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import subprocess
import spaces
import torch
import gradio as gr
from gradio_client.client import DEFAULT_TEMP_DIR
from playwright.sync_api import sync_playwright
from typing import List, Optional
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
from transformers.image_transforms import resize, to_channel_dimension_format
import hashlib
# --- Optimization Parameters ---
RESIZE_IMAGE = 224 # Further reduce image size for faster processing
USE_QUANTIZED_MODEL = True # Try loading a quantized version if available
CACHE_RENDERED_HTML = True
FORCE_CPU = True # Force CPU usage
# --- Device Setup ---
DEVICE = torch.device("cpu") if FORCE_CPU else torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {DEVICE}")
# --- Model Loading ---
MODEL_NAME = "HuggingFaceM4/VLM_WebSight_finetuned"
QUANTIZED_MODEL_NAME = MODEL_NAME + ".quantized" # Check for quantized version
processor = None # Initialize outside the try block
model = None
try:
if USE_QUANTIZED_MODEL and os.path.exists(QUANTIZED_MODEL_NAME):
print(f"Loading quantized model: {QUANTIZED_MODEL_NAME}")
processor = AutoProcessor.from_pretrained(MODEL_NAME) # Use the original processor
model = AutoModelForCausalLM.from_pretrained(
QUANTIZED_MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32, # or torch.float16 if supported
).to(DEVICE)
else:
print(f"Loading full model: {MODEL_NAME}")
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32,
).to(DEVICE) # Load on CPU directly
except Exception as e:
print(f"Error loading model: {e}")
if model.config.use_resampler:
image_seq_len = model.config.perceiver_config.resampler_n_latents
else:
image_seq_len = (
model.config.vision_config.image_size // model.config.vision_config.patch_size
) ** 2
BOS_TOKEN = processor.tokenizer.bos_token
BAD_WORDS_IDS = processor.tokenizer(
["<image>", "<fake_token_around_image>"], add_special_tokens=False
).input_ids
# --- Utility Functions ---
def convert_to_rgb(image):
if image.mode == "RGB":
return image
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
return alpha_composite
def custom_transform(x):
x = convert_to_rgb(x)
x = to_numpy_array(x)
x = resize(x, (RESIZE_IMAGE, RESIZE_IMAGE), resample=PILImageResampling.BILINEAR)
x = processor.image_processor.rescale(x, scale=1 / 255)
x = processor.image_processor.normalize(
x, mean=processor.image_processor.image_mean, std=processor.image_processor.image_std
)
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
x = torch.tensor(x).float() # Convert to float32 here
return x
# --- Playwright Installation ---
def install_playwright():
try:
subprocess.run(["playwright", "install"], check=True)
print("Playwright installation successful.")
except subprocess.CalledProcessError as e:
print(f"Error during Playwright installation: {e}")
install_playwright()
# --- HTML Rendering Cache ---
html_render_cache = {}
def render_webpage(html_css_code: str) -> Image.Image:
"""Renders HTML code to an image using Playwright, with caching."""
if CACHE_RENDERED_HTML:
html_hash = hashlib.md5(html_css_code.encode("utf-8")).hexdigest()
if html_hash in html_render_cache:
print("Using cached rendered HTML.")
return html_render_cache[html_hash]
with sync_playwright() as p:
browser = p.chromium.launch(headless=True) # Reuse browser if possible
context = browser.new_context(
user_agent=(
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0"
" Safari/537.36"
)
)
page = context.new_page()
page.set_content(html_css_code)
page.wait_for_load_state("networkidle")
output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png"
page.screenshot(path=output_path_screenshot, full_page=True)
context.close()
browser.close()
image = Image.open(output_path_screenshot)
if CACHE_RENDERED_HTML:
html_render_cache[html_hash] = image
return image
# --- Gallery ---
IMAGE_GALLERY_PATHS = [
f"example_images/{ex_image}" for ex_image in os.listdir("example_images")
]
def add_file_gallery(
selected_state: gr.SelectData, gallery_list: List[str]
) -> Image.Image:
return Image.open(gallery_list.root[selected_state.index].image.path)
# --- Model Inference ---
def model_inference(image: Image.Image) -> tuple[str, Image.Image]:
"""Performs model inference and renders the result."""
if image is None:
raise ValueError("`image` is None. It should be a PIL image.")
inputs = processor.tokenizer(
f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
return_tensors="pt",
add_special_tokens=False,
)
inputs["pixel_values"] = processor.image_processor(
[image],
transform=custom_transform
)
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.no_grad(): # Disable gradient calculation
generation_kwargs = dict(
inputs, bad_words_ids=BAD_WORDS_IDS, max_length=4096
)
generated_ids = model.generate(**generation_kwargs)
generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=True
)[0]
rendered_page = render_webpage(generated_text)
return generated_text, rendered_page
# --- Gradio Interface ---
generated_html = gr.Code(
label="Extracted HTML", elem_id="generated_html"
)
rendered_html = gr.Image(
label="Rendered HTML", show_download_button=False, show_share_button=False
)
css = """
.gradio-container{max-width: 1000px!important}
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
*{transition: width 0.5s ease, flex-grow 0.5s ease}
"""
with gr.Blocks(title="Screenshot to HTML", theme=gr.themes.Base(), css=css) as demo:
gr.Markdown(
"Since the model used for this demo *does not generate images*, it is more effective to input standalone website elements or sites with minimal image content."
)
with gr.Row(equal_height=True):
with gr.Column(scale=4, min_width=250) as upload_area:
imagebox = gr.Image(
type="pil",
label="Screenshot to extract",
visible=True,
sources=["upload", "clipboard"],
)
with gr.Group():
with gr.Row():
submit_btn = gr.Button(
value="▶️ Submit", visible=True, min_width=120
)
clear_btn = gr.ClearButton(
[imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120
)
regenerate_btn = gr.Button(
value="🔄 Regenerate", visible=True, min_width=120
)
with gr.Column(scale=4):
rendered_html.render()
with gr.Row():
generated_html.render()
with gr.Row():
template_gallery = gr.Gallery(
value=IMAGE_GALLERY_PATHS,
label="Templates Gallery",
allow_preview=False,
columns=5,
elem_id="gallery",
show_share_button=False,
height=400,
loading_lazy="eager",
)
gr.on(
triggers=[
imagebox.upload,
submit_btn.click,
regenerate_btn.click,
],
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
)
regenerate_btn.click(
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
)
template_gallery.select(
fn=add_file_gallery,
inputs=[template_gallery],
outputs=[imagebox],
).success(
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
)
demo.load()
demo.queue(max_size=40, api_open=False)
demo.launch(max_threads=400) |