# Import necessary libraries from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load pre-trained model and tokenizer model_name = 'microsoft/DialoGPT-medium' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_response(user_input, chat_history_ids=None): # Encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') # Append the new user input tokens to the chat history, # pass the tokens to the model, and get the response bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # Decode the generated response from the model response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) return response, chat_history_ids # Example usage: # response, chat_history_ids = generate_response("Hello, how are you?") # print(response)