Spaces:
Runtime error
Runtime error
import math | |
import os | |
import argparse | |
import json | |
import warnings | |
from tqdm import tqdm | |
from torch.utils.data import Dataset, DataLoader | |
import sys | |
sys.path.append('./') | |
from videollama2 import model_init, mm_infer | |
from videollama2.utils import disable_torch_init | |
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560) | |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
class MSVCDataset(Dataset): | |
video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv'] | |
def __init__(self, folder, questions, processor): | |
self.folder = folder | |
self.questions = questions | |
self.processor = processor | |
def __len__(self): | |
return len(self.questions) | |
def __getitem__(self, idx): | |
sample = self.questions[idx] | |
video_name = sample['video_path'] | |
question = sample['question'] | |
answer = sample['captions'] | |
video_path = os.path.join(self.folder, video_name) | |
video_tensor = self.processor(video_path) | |
return { | |
'video': video_tensor, | |
'video_name': video_name, | |
'question': question, | |
'answer': answer, | |
} | |
def collate_fn(batch): | |
vid = [x['video'] for x in batch] | |
v_id = [x['video_name'] for x in batch] | |
qus = [x['question'] for x in batch] | |
ans = [x['answer'] for x in batch] | |
return vid, v_id, qus, ans | |
def run_inference(args): | |
disable_torch_init() | |
model, processor, tokenizer = model_init(args.model_path) | |
gt_questions = json.load(open(args.question_file, "r")) | |
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx) | |
answer_file = os.path.join(args.output_file) | |
os.makedirs(os.path.dirname(args.output_file), exist_ok=True) | |
ans_file = open(answer_file, "w") | |
assert args.batch_size == 1, "Batch size must be 1 for inference" | |
dataset = MSVCDataset(args.video_folder, gt_questions, processor['video']) | |
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn) | |
# Iterate over each sample in the ground truth file | |
for idx, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)): | |
video_tensor = video_tensors[0] | |
video_name = video_names[0] | |
question = questions[0] | |
answer = answers[0] | |
output = mm_infer( | |
video_tensor, | |
question, | |
model=model, | |
tokenizer=tokenizer, | |
modal='video', | |
do_sample=False, | |
) | |
sample_set = {'video_name': video_name, 'question': question, 'answer': answer, 'pred': output} | |
ans_file.write(json.dumps(sample_set) + "\n") | |
ans_file.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model-path', help='', required=True) | |
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) | |
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) | |
parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True) | |
parser.add_argument("--num-chunks", type=int, default=1) | |
parser.add_argument("--chunk-idx", type=int, default=0) | |
parser.add_argument("--device", type=str, required=False, default='cuda:0') | |
parser.add_argument("--batch-size", type=int, required=False, default=1) | |
parser.add_argument("--num-workers", type=int, required=False, default=8) | |
args = parser.parse_args() | |
run_inference(args) | |